Publications by authors named "Yannick Lemke"

Article Synopsis
  • The paper discusses an advanced method called COOX, which is adapted to calculate core excitations using a constraint-based approach in density functional theory (DFT).
  • COOX combines elements like spin-unrestricted formalism and relativistic corrections to deliver highly accurate results for core excitations in second- and third-period atoms, with small errors.
  • The method also shows strong performance for heavier atoms and is competitive with established techniques like ΔSCF, making it a valuable tool for simulating X-ray absorption spectra with better convergence and lower computational costs.
View Article and Find Full Text PDF

In this work, we present a novel method to directly calculate targeted electronic excited states within a self-consistent field calculation based on constrained density functional theory (cDFT). The constraint is constructed from the static occupied-occupied and virtual-virtual parts of the excited state difference density from (simplified) linear-response time-dependent density functional theory calculations (LR-TDDFT). Our new method shows a stable convergence behavior, provides an accurate excited state density adhering to the Aufbau principle, and can be solved within a restricted SCF for singlet excitations to avoid spin contamination.

View Article and Find Full Text PDF

σ-Functionals are promising new developments for the Kohn-Sham correlation energy based upon the direct Random Phase Approximation (dRPA) within the adiabatic connection formalism, providing impressive improvements over dRPA for a broad range of benchmarks. However, σ-functionals exhibit a high amount of self-interaction inherited from the approximations made within dRPA. Inclusion of an exchange kernel in deriving the coupling-strength-dependent density-density response function leads to so-called τ-functionals, which - apart from a fourth-order Taylor series expansion - have only been realized in an approximate fashion so far to the best of our knowledge, most notably in the form of scaled σ-functionals.

View Article and Find Full Text PDF

An alternative and complementary transformation for the synthesis of aryl- and heteroaryl-substituted alkynes is presented that relies on a chemoselective electrocoupling process. Tetraorganoborate substrates were logically designed and simply accessed by transmetalations using readily or commercially available organotrifluoroborate salts.

View Article and Find Full Text PDF

Chiral β-aminoalkylzinc halides were prepared starting from optically pure commercial β-amino-alcohols. These amino-alcohols were converted to the corresponding N-pyrrolyl-protected alkyl iodides which undergo a zinc insertion in the presence of LiCl (THF, 25 °C, 10-90 min). Subsequent Negishi cross-coupling or acylation reactions with acid chlorides produced amino-derivatives with retention of chirality.

View Article and Find Full Text PDF