The extent of within-species genetic variation across the diversity of animal life is an underexplored problem in ecology and evolution. Although neutral genetic variation should scale positively with population size, mitochondrial diversity levels are believed to show little variation across animal species. Here, we report an unprecedented case of extreme mitochondrial diversity within natural populations of two morphospecies of chaetognaths (arrow worms).
View Article and Find Full Text PDFLittle is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements.
View Article and Find Full Text PDFBackground: A recent study by Barthélémy et al. described a set of ribosomal protein (RP) genes extracted from a collection of expressed sequence tags (ESTs) of the chaetognath (arrow worm) Spadella cephaloptera. Three main conclusions were drawn in this paper.
View Article and Find Full Text PDFBackground: The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features.
View Article and Find Full Text PDFHox genes encode a set of evolutionarily conserved transcription factors that regulate anterior-posterior patterning. Here we report the first developmental expression of a Hox gene from Chaetognatha. These metazoans have been shown recently to be part of the protostome group of bilaterians.
View Article and Find Full Text PDFThe Brachyury family of T-domain containing transcription factor has been recently the subject of a number of Evo-Devo studies, with expression data obtained from a wide sampling of eumetazans, pointing to a possible conserved role in the formation of the blastopore and the extremities of the digestive tract. Here we present a comparative analysis of Brachyury sequences at the metazoan scale, using published data and two new sponge Brachyury sequences. Alignment features, gene phylogeny, and the evolution of variable positions within the T-domain are discussed in the light of available data about functional constraints on the residues.
View Article and Find Full Text PDFDetermining the phylogenetic position of enigmatic phyla such as Chaetognatha is a longstanding challenge for biologists. Chaetognaths (or arrow worms) are small, bilaterally symmetrical metazoans. In the past decades, their relationships within the metazoans have been strongly debated because of embryological and morphological features shared with the two main branches of Bilateria: the deuterostomes and protostomes.
View Article and Find Full Text PDFBecause calcareous sponges are triggering renewed interest with respect to basal metazoan evolution, a phylogenetic framework of their internal relationships is needed to clarify the evolutionary history of key morphological characters. Morphological variation was scored at the suprageneric level within Calcispongia, but little phylogenetic information could be retrieved from morphological characters. For the main subdivision of Calcispongia, the analysis of morphological data weakly supports a classification based upon cytological and embryological characters (Calcinea/Calcaronea) rather than the older classification scheme based upon the aquiferous system (Homocoela/Heterocoela).
View Article and Find Full Text PDFWe present the isolation of six Hox genes in the chaetognath Spadella cephaloptera. We identified one member of the paralogy group 3, four median genes and a mosaic gene that shares features of both median and posterior classes ( SceMedPost). Several hypotheses may account for the presence of a mosaic Hox gene in this animal.
View Article and Find Full Text PDFWe report a direct examination of the expression of one collagen gene (DCg1) during Drosophila melanogaster metamorphosis, based on data from in situ hybridization. The transcripts of this gene, thought to encode a basement membrane type IV collagen, are mainly accumulated during ecdysis in wandering haemocytes. Our results demonstrate that haemocytes contribute to extracellular matrix deposition and seem to perform a fibroblastic function during Drosophila development.
View Article and Find Full Text PDF