Local biosynthesis of estrogens, especially estradiol (E2), is thought to be important for the maintenance and growth of estrogen-sensitive diseases. To control E2 formation, we have investigated a series of epoxide and furanic E2 derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), the enzyme responsible for the conversion of estrone (E1) into E2. We report here a strategy to synthesize a series of E2-furanic derivatives from E1.
View Article and Find Full Text PDFWe investigated the relative involvement of three reductive 17beta-hydroxysteroid dehydrogenase (17beta-HSD) isoforms, namely types 1, 7 and 12, in the formation of potent estrogen estradiol (E2) in 10 human breast cancer cell lines (T-47D, MCF-7, ZR-75-1, CAMA-1, BT-20, BRC-17, BRC-31, BRC-32, BRC-36 and BRN-196) and also in 1 choriocarcinoma cell line (JEG-3) using selective inhibitors. In T-47D, BT-20 and JEG-3 cells, a 17beta-HSD1 inhibitor almost completely inhibited the formation of E2 at 1microM from 60nM of estrone (E1) (98%, 91% and 90%, respectively), whereas no significant inhibition of E2 formation was obtained using inhibitors of types 7 and 12. However, we obtained lower levels of inhibition (32%, 36% and 35% respectively using inhibitors of types 1, 7 and 12 at 10microM) in MCF-7 cells and even lower and variable levels of inhibition (15%, 23% and 18% respectively using inhibitors of types 1, 7 and 12 at 10microM) in ZR-75-1 cells.
View Article and Find Full Text PDFAs a therapeutic approach for the treatment of androgen-sensitive diseases, it would be tempting to lower the level of the potent androgens testosterone (T) and dihydrotestosterone (DHT) by using inhibitors of type 3 and type 5 17beta-hydroxysteroid dehydrogenases (17beta-HSDs). However, the efficiency of such a strategy will be optimal only if androst-4-ene-3,17-dione (Delta4-dione), the precursor of T, does not possess per se agonist activity on the androgen receptor (AR). To determine if the proliferative effect previously observed on AR(+) cells for Delta4-dione originates from its direct (per se) action on AR or from its transformation into a metabolite, we started a series of experimentations using the human prostate cancer LNCaP cell line, which expresses a highly sensitive AR.
View Article and Find Full Text PDFEstrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity.
View Article and Find Full Text PDFA series of estrone and estradiol derivatives having an N-butyl,methyl heptanamide side chain at C6-position were synthesized, tested as inhibitors of type 1 17beta-HSD and assessed for their possible estrogenic activity. A better type 1 17beta-HSD inhibition was obtained for the 6beta-side chain orientation over 6alpha; the C17-alcohols are more potent inhibitors than the corresponding ketones; introducing a 2-methoxy group decreased the inhibitory potency; and the replacement of a C-S bond by a C-C bond in the C6beta-side chain is not detrimental to inhibition. Interestingly, the new inhibitors were also found less estrogenic than the lead compound in two breast cancer cell lines, T-47D and MCF-7.
View Article and Find Full Text PDFSteroidogenic enzyme type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD) is an important therapeutic target for androgen-sensitive diseases. This enzyme selectively reduces the C17 ketone of 4-androstene-3,17-dione (Delta4-dione), thus producing testosterone (T) using NADPH as cofactor. Our group previously synthesized hybrid (estradiol/adenosine) inhibitors that successfully inhibit the biosynthesis of the potent estrogen estradiol by type 1 17beta-HSD.
View Article and Find Full Text PDFType 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD) is involved in the biosynthesis of the potent androgen testosterone (T), which plays an important role in androgen-sensitive diseases. In an attempt to design compounds to lower the level of T, we designed androsterone (ADT) derivatives substituted at the position 3beta as inhibitors of type 3 17beta-HSD, and then selected the eight most potent ones (compounds 1-8) for additional studies. In an intact cell assay, they inhibited efficiently the conversion of natural substrate 4-androstene-3,17-dione into T, although they were less active in intact cells (IC50 approximately 1 microM) than in homogenated cells (IC50=57-100 nM).
View Article and Find Full Text PDF