Publications by authors named "Yannick Estevez"

is a bacterial species widely found in the environment, which very efficiently colonizes mosquitoes. In this study, we isolated a red-pigmented strain from our mosquito colony (called VA). This red pigmentation is caused by the production of prodigiosin, a molecule with antibacterial properties.

View Article and Find Full Text PDF

Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent.

View Article and Find Full Text PDF

Natural products have proven to be an immeasurable source of bioactive compounds. The exceptional biodiversity encountered in Amazonia, alongside a rich entomofauna and frequent interactions with various herbivores is the crucible of a promising chemodiversity. This prompted us to search for novel botanical insecticides in French Guiana.

View Article and Find Full Text PDF

Intimate partnership: Knowledge of the biocatalytic cascades in different cellular compartments is limited, but deciphering these systems in nature can be used to inspire synthetic strategies. Two studies report new insights into the biosynthesis of alkaloids and sesterterpenoids in plants. This highlight presents these novel biotransformations to illustrate how tandem biocatalysis can impact the future of natural product production.

View Article and Find Full Text PDF

The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research.

View Article and Find Full Text PDF

In this study, we cloned, expressed and purified the isopentenyl diphosphate isomerases (IDIs) from two plants, Hevea brasiliensis and Solanum lycopersicum, and compared them to the already well characterized Escherichia coli IDI. Phylogenetic analysis showed high homology between the three enzymes. Their catalytic activity was investigated in vitro with recombinant purified enzymes and in vivo by complementation colorimetric tests.

View Article and Find Full Text PDF

Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability.

View Article and Find Full Text PDF

Background: A major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P.

View Article and Find Full Text PDF

This review article aims to gather all the knowledge on two important proteins associated with Hevea brasiliensis rubber particles: namely the rubber elongation factor (REF) and the small rubber particle protein (SRPP). It covers more then three decades of research on these two proteins and their homologues in plants, and particularly emphasizes on the different possible properties or functions of these various proteins found in plants.

View Article and Find Full Text PDF

During analysis of pure isoprene by gas chromatography/mass spectrometry (GC-MS) using a programmed temperature vaporization (PTV) inlet, the presence of several isoprene dimers was detected in the total ion chromatograms (TICs). This study intends to determine the part of the instrument where dimerization occurs and the relative importance of the dimer amounts under different experimental conditions. The reference thermal dimerization of isoprene gives four six-membered cyclic dimers and two eight-membered ones.

View Article and Find Full Text PDF

HbREF and HbSRPP are two Hevea brasiliensis proteins present on rubber particles, and probably involved in the coagulation of latex. Their function is unclear, but we previously discovered that REF had amyloid properties, which could be of particular interest during the coagulation process. First, we confirmed that REF and SRPP, homologous and principal proteins in hevea latex, are not glycoproteins.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interactions of two proteins, HbREF (Hevb1) and HbSRPP (Hevb3), with biomembranes that surround rubber particles in hevea latex.
  • Both proteins are linked to rubber synthesis and quality, but their specific roles are unclear.
  • Through various biophysical methods, it was found that SRPP covers lipid headgroups without disrupting the membrane, while REF shows a stronger affinity, alters the membrane structure, and may even extract lipids, suggesting they have different functional roles on rubber particles.
View Article and Find Full Text PDF

REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway.

View Article and Find Full Text PDF

Two new dihydrochalcones (1, 2), as well as eight known compounds, piperaduncin C (3), 2',6'-dihydroxy-4'-methoxydihydrochalcone (4), 4,2',6'-trihydroxy-4'-methoxydihydrochalcone (5), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (6), 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (7), 4-hydroxy-3-(3-methyl-2-butenoyl)-5-(3-methyl-2-butenyl)-benzoic acid (8), 2,2-dimethyl-8-(3-methyl-2-butenyl)-2H-1-chromene-6-carboxylic acid (9), and 3-(3',7'-dimethyl-2',6'-octadienyl)-4-methoxybenzoic acid (10) were isolated from the leaves of Piper dennisii Trelease (Piperaceae), using a bioassay-guided fractionation to determine their antileishmanial potential. Among them, compound 10 exhibited the best antileishmanial activity (IC50 = 20.8 µM) against axenic amastigote forms of Leishmania amazonensis, with low cytotoxicity on murine macrophages.

View Article and Find Full Text PDF

Even if the isopentenyl diphosphate (IPP) isomerases have been discovered in the 50s, it is only in the last decade that the genetical, enzymatical, structural richness and cellular importance of this large family of crucial enzymes has been uncovered. Present in all living kingdoms, they can be classified in two subfamilies: type 1 and type 2 IPP isomerases, which show clearly distinct characteristics. They all perform the regulatory isomerization of isopentenyl diphosphate into dimethylallyl diphosphate, a key rate-limiting step of the terpenoid biosynthesis, via a protonation/deprotonation mechanism.

View Article and Find Full Text PDF

Pyrazole and propenone quinoxaline derivatives were tested against intracellular forms of Leishmania peruviana and Trypanosoma cruzi. Both series were tested for toxicity against proliferative and non-proliferative cells. The pyrazole quinoxaline series was quite inactive against T.

View Article and Find Full Text PDF

The synthesis of 2-(5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4-yl)hydrazone-derivatives (BTPs) and their in vitro evaluation against Trypanosoma cruzi trypomastigotes, Mycobacterium tuberculosis, Leishmania amazonensis axenic amastigotes, and six human cancer cell lines is described. The in vivo activity of the most active and least toxic compounds against T. cruzi and L.

View Article and Find Full Text PDF

The in vitro screening of 43 polysubstituted chalcones against Leishmania amazonensis axenic amastigotes, led to the evaluation of 9 of them in a macrophage-infected model with the two other most infectious Leishmania species prevalent in Peru (L. braziliensis and L. peruviana).

View Article and Find Full Text PDF

The aim of this work is the isolation of anti-leishmanial compounds from the ethyl acetate extracts of the bark of HEDYOSMUM ANGUSTIFOLIUM. We have successfully isolated and characterized five sesquiterpenes: one new compound (oxyonoseriolide, 1), one compound isolated for the first time from a natural source (hedyosmone, 2), and three known sesquiterpenes (onoseriolide, 3; chloranthalactone A, 4; and spathulenol, 5) that had not been previously isolated from H. ANGUSTIFOLIUM.

View Article and Find Full Text PDF

Aim Of The Study: Ninety-four ethanolic extracts of plants used medicinally by the Yanesha, an Amazonian Peruvian ethnic group, for affections related to leishmaniasis and malaria were screened in vitro against Leishmania amazonensis amastigotes and against a Plasmodium falciparum chloroquine resistant strain.

Materials And Methods: The viability of Leishmania amazonensis amastigote stages was assessed by the reduction of tetrazolium salt (MTT) while the impact on Plasmodium falciparum was determined by measuring the incorporation of radio-labelled hypoxanthine.

Results And Conclusions: Six plant species displayed good activity against Plasmodium falciparum chloroquine resistant strain (IC(50) < 10 microg/ml): a Monimiaceae, Siparuna aspera (Ruiz & Pavon), A.

View Article and Find Full Text PDF

This study, undertaken to compare the susceptibility of THP-1 cells and murine peritoneal macrophages to Leishmania peruviana amastigotes, obtained THP-1 infection with 10 parasites/cell compared to 2 parasites/murine macrophage. The parasite burden was maximal at 72 h post-infection (h.p.

View Article and Find Full Text PDF

A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active.

View Article and Find Full Text PDF

A pharmacological screening of the ethanol extract and fractions of Blepharodon nitidum led to the isolation of fourteen compounds, two of which, 24-hydroperoxycycloart-25-en-3beta-ol and 25-hydroperoxycycloart-23-en-3beta-ol, exhibited in vitro anti- Mycobacterium tuberculosis and antileishmanial activities, as well as significant cytotoxic activity against a panel of human tumor cell lines.

View Article and Find Full Text PDF

The virus protein linked to the genome (VPg) of plant potyviruses is a 25-kDa protein covalently attached to the genomic RNA 5' end. It was previously reported that VPg binds specifically to eIF4E, the mRNAcap-binding protein of the eukaryotic translation initiation complex. We performed a spectroscopic study of the interactions between lettuce eIF4E and VPg from lettuce mosaic virus (LMV).

View Article and Find Full Text PDF