Isolated many-body systems far from equilibrium may exhibit scaling dynamics with universal exponents indicating the proximity of the time evolution to a nonthermal fixed point. We find universal dynamics connected with the occurrence of extreme wave excitations in the mutually coupled magnetic components of a spinor gas which propagate in an effectively random potential. The frequency of these rogue waves is affected by the time-varying spatial correlation length of the potential, giving rise to an additional exponent δ_{c}≃1/3 for temporal scaling, which is different from the exponent β_{V}≃1/4 characterizing the scaling of the correlation length ℓ_{V}∼t^{β_{V}} in time.
View Article and Find Full Text PDF