Publications by authors named "Yannick De Wilde"

The linear and nonlinear optical properties of metallic nanoparticles have attracted considerable experimental and theoretical research interest. To date, most researchers have focused primarily on exploiting their plasmon excitation enhanced near-field and far-field responses and related applications in sensing, imaging, energy harvesting, conversion, and storage. Among numerous plasmonic structures, nanoparticle dimers, being a structurally simple and easy-to-prepare system, hold significant importance in the field of nanoplasmonics.

View Article and Find Full Text PDF

Effective cross sections of nano-objects are fundamental properties that determine their ability to interact with light. However, measuring them for individual resonators directly and quantitatively remains challenging, particularly because of the very low signals involved. Here, we experimentally measure the thermal emission cross section of metal-insulator-metal nanoresonators using a stealthy hyperuniform distribution based on a hierarchical Poisson-disk algorithm.

View Article and Find Full Text PDF

High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm.

View Article and Find Full Text PDF

The development of integrated photonic devices has led to important advancements in the field of light-matter interaction at the nanoscale. One of the main focal points is the coupling between single photon emitters and optical waveguides aiming to achieve efficient optical confinement and propagation. In this work, we focus on the characterization of a hybrid dielectric/plasmonic waveguide consisting of a gold triangular nanoantenna placed on top of a TiO waveguide.

View Article and Find Full Text PDF

The study of hybrid modes in a single dimer of neighboring antennas is an essential step to optimize the far-field electromagnetic (EM) response of large-scale metasurfaces or any complex antenna structure made up of subwavelength building blocks. Here we present far-field infrared spatial modulation spectroscopy (IR-SMS) measurements of a single thermally excited asymmetric dimer of square metal-insulator-metal (MIM) antennas separated by a nanometric gap. Through thermal fluctuations, all the EM modes of the antennas are excited, and hybrid bonding and anti-bonding modes can be observed simultaneously.

View Article and Find Full Text PDF

We present a direct experimental investigation of the optical field distribution around a suspended tapered optical nanofiber by means of a fluorescent scanning probe. Using a 100 nm diameter fluorescent bead as a probe of the field intensity, we study interferences made by a nanofiber (400 nm diameter) scattering a plane wave (568 nm wavelength). Our scanning fluorescence near-field microscope maps the optical field over 36 μm, with λ/5 resolution, from contact with the surface of the nanofiber to a few micrometers away.

View Article and Find Full Text PDF

The far-field spectral and near-field spatial responses of an individual metal-insulator-metal nanoantenna are reported, using thermal fluctuations as an internal source of the electromagnetic field. The far-field spectra, obtained by combining Fourier transform infrared spectroscopy with spatial modulation based on a light falloff effect in a confocal geometry, have revealed two distinct emission peaks attributed to the excitation of the fundamental mode of the nanoantenna at two distinct wavelengths. Superresolved near-field images of the thermally excited mode have been obtained by thermal radiation scanning tunneling microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how light intensity correlates in optical speckle patterns above a disordered dielectric medium when multiple scattering occurs.
  • Intensity distributions are captured using near-field optical microscopy (SNOM), allowing for high-resolution observations from very close to the surface to much farther away.
  • Findings show that at sub-wavelength distances, there is a unique behavior that links the near-field speckle patterns to the internal structure of the medium itself.
View Article and Find Full Text PDF

We demonstrate a new multi-frequency approach for mapping near-field optically induced forces with subwavelength spatial resolution. The concept relies on oscillating a scanning probe at two different frequencies. Oscillations at one frequency are driven electrically to provide positional feedback regulation.

View Article and Find Full Text PDF

We report local spectra of the near-field thermal emission recorded by a Fourier transform infrared spectrometer, using a tungsten tip as a local scatterer coupling the near-field thermal emission to the far field. Spectra recorded on silicon carbide and silicon dioxide exhibit temporal coherence due to thermally excited surface waves. Finally, we evaluate the ability of this spectroscopy to probe the frequency dependence of the electromagnetic local density of states.

View Article and Find Full Text PDF

We describe the use of Raman spectroscopy to detect and quantify, for the first time, the presence of the imprinting template in single molecularly imprinted polymer microspheres. The polymers were imprinted with the beta-blocking drugs propranolol and atenolol, and precipitation polymerization was used to obtain spherical particles of diameters of 200 nm and 1.5microm.

View Article and Find Full Text PDF

In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons.

View Article and Find Full Text PDF

Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip.

View Article and Find Full Text PDF

The characteristics of a few experimental near-field optical microscopes, located in different laboratories, have been compared on the basis of their ability to image a well-defined submicrometer test object.

View Article and Find Full Text PDF