Expression of concern for 'An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles' by Palaniappan Subramanian , , 2014, , 1726-1731, https://doi.org/10.1039/C3AN02045B.
View Article and Find Full Text PDFExpression of concern for 'Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides' by Palaniappan Subramanian , , 2014, , 4343-4349, https://doi.org/10.1039/C4AN00146J.
View Article and Find Full Text PDFOne of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy.
View Article and Find Full Text PDFCorrection for 'Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides' by Palaniappan Subramanian , , 2014, , 4343-4349, https://doi.org/10.1039/C4AN00146J.
View Article and Find Full Text PDFNeural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Biology uses neurogenesis and structural plasticity to solve this problem. Advanced neural network algorithms are mostly relying on synaptic plasticity and learning.
View Article and Find Full Text PDFAlzheimer's disease (AD) is nowadays the prominent cause of senile dementia. This pathology is characterized by aggregation of neurofibrillary tangles in cells and by the accumulation of amyloid plaques in the brain. Noteworthy, a phosphorylated protein (tau protein) and a peptide presenting two overlapping sequences of 40 or 42 residues named β-amyloid peptides 1-40 (Aβ 1-40) and 1-42 (Aβ 1-42), respectively, were related to such deleterious phenomena.
View Article and Find Full Text PDFMicroelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling.
View Article and Find Full Text PDFDespite several demonstrations of electrochemical devices with limits of detection (LOD) of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to the challenges of scaling up. In this study, we show that the recently introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed.
View Article and Find Full Text PDFRecently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes.
View Article and Find Full Text PDFRationale: Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an approach derived from matrix-assisted laser desorption/ionization (MALDI)-MS which overcomes the drawbacks associated with the use of organic matrices required to co-crystallize with the analytes. Indeed, nanomaterials commonly used in SALDI-MS as inert surfaces to promote desorption/ionization (D/I) ensure straightforward direct deposition of samples while providing mass spectra with ions only related to the compound of interest. The objective of this study was to develop a novel SALDI-MS approach based on steel plates that are surfaces very rapidly and easily tuned to perform the most efficient peptide detection as possible.
View Article and Find Full Text PDFElectropolymerization is a bottom-up materials engineering process of micro/nano-scale that utilizes electrical signals to deposit conducting dendrites morphologies by a redox reaction in the liquid phase. It resembles synaptogenesis in the brain, in which the electrical stimulation in the brain causes the formation of synapses from the cellular neural composites. The strategy has been recently explored for neuromorphic engineering by establishing link between the electrical signals and the dendrites' shapes.
View Article and Find Full Text PDFAlthough materials and processes are different from biological cells', brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites': fractal number, branching degree, asymmetry, density or length.
View Article and Find Full Text PDFOne of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2021
In this paper, we report on the nanostructuration of the silicon crystalline top layer of different "home-made" SOI substrates presenting various buried oxide (BOx) layer thicknesses. The nanostructuration was achieved via a one-step metal assisted chemical etching (MACE) procedure. The etched N-SOI substrate surfaces were then characterized by AFM, SEM and photoluminescence.
View Article and Find Full Text PDFRationale: Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...
View Article and Find Full Text PDFIn recent years, DNA computing frameworks have been developed to create dynamical systems which can be used for information processing. These emerging synthetic biochemistry tools can be leveraged to gain a better understanding of fundamental biology but can also be implemented in biosensors and unconventional computing. Most of the efforts so far have focused on changing the topologies of DNA molecular networks or scaling them up.
View Article and Find Full Text PDFWe created different TiO₂-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO₂ based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS).
View Article and Find Full Text PDFFouling is a widespread and costly issue, faced by all food-processing industries. Particularly, in the dairy sector, where thermal treatments are mandatory to ensure product safety, heat-induced fouling represents up to 80% of the total production costs. Significant environmental impacts, due the massive consumption of water and energy, are also to deplore.
View Article and Find Full Text PDFHere, we report for the first time, the use of molybdenum disulfide/titanium oxide/silicon nanowires (MoS/TiO/SiNW) surfaces for SALDI-MS detection as alternative to MALDI-MS method. Silicon nanowires were fabricated by the well-known metal-assisted chemical etching process followed by the deposition of TiO by atomic layer deposition. MoS deposition was achieved through hydrothermal treatment.
View Article and Find Full Text PDFElectrophoretic deposition (EPD) of reduced graphene oxide nanosheets (rGO) offers several advantages over other surface coating approaches, including process simplicity, uniformity of the deposited films, and good control of the film thickness. The EPD conditions might also be of interest for the reduction of diazonium salts, which upon the release of N molecules and generation of radicals, can form covalent bonds with the sp hybridized carbon lattice atoms of rGO films. In this work, we report on the coating of gold electrodes in one step with rGO/polyethylenimine (PEI) thin films and their simultaneous modification using different phenyl (Ph) diazonium salt precursors bearing various functionalities such as -B(OH), -COOH, and -C≡CH.
View Article and Find Full Text PDFIn this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS).
View Article and Find Full Text PDFGraphene oxide (GO), a recently discovered material, has been investigated for many applications in various fields. Thus, an immense awareness should be paid on the potential effects of the material on the environment as huge quantities of GO may get to the environment. Aquatic organisms, marine algae as an example, are exposed to such material when disposed to the environment.
View Article and Find Full Text PDF