Publications by authors named "Yannick Bontemps"

The proprotein convertases (PCs) are serine proteases involved in various physiological processes and their overactivity or inactivity has been linked to different disorders. PCs are responsible for the proteolytic processing of various polypeptide precursors. Here, we discuss the effect of their N-terminal prosegments on various PC substrates processing and functions.

View Article and Find Full Text PDF

The proprotein convertases (PCs) are implicated in the activation of various precursor proteins that play an important role in tumor cell metastasis. Here, we report their involvement in the regulation of the metastatic potential of colorectal tumor cells. PC function in the human and murine colon carcinoma cell lines HT-29 and CT-26, respectively, was inhibited using siRNA targeting the PCs furin, PACE4, PC5, and PC7 or by overexpression of the general PC inhibitor alpha1-antitrypsin Portland (alpha1-PDX).

View Article and Find Full Text PDF

Proteolytic cleavage of various cancer-related substrates by the proprotein convertases (PC) was reported to be important in the processes of neoplasia. These enzymes are inhibited by their naturally occurring inhibitors, the prosegments (ppPC), and by the engineered general PC inhibitor, the serpin variant alpha1-PDX. In the present study, we sought to compare the effect of these PC inhibitors on malignant phenotypes of breast cancer cells.

View Article and Find Full Text PDF

The proprotein convertases (PCs) are responsible for the endoproteolytic processing of various protein precursors (e.g., growth factors, receptors, adhesion molecules, and matrix metalloproteinases) implicated in several diseases such as obesity, diabetes, atherosclerosis, cancer, and Alzheimer disease.

View Article and Find Full Text PDF

UDP-glucose dehydrogenase (UGDH) is a key enzyme of the unique pathway for the synthesis of UDP-glucuronate, the substrate for the numerous glucuronosyl transferases, which act on the synthesis of glycosaminoglycans and glucuronidation reaction of xeno- and endobiotics. Using the bacterial artificial chromosome approach, we have cloned and characterized the human UGDH promoter. The core promoter of -644 nucleotides conferred reporter gene activity in transient transfection assay of a variety of cell types, including MRC5 fibroblasts and the HepG2 hepatoma cell line.

View Article and Find Full Text PDF