Macroscopic quantum phenomena, e.g., superconductivity and squeezing, are believed to result from entanglement of macroscopic numbers of particles.
View Article and Find Full Text PDFInterference between an unknown two-photon state (a "biphoton") and the two-photon component of a reference state gives a phase-sensitive arrival-time distribution containing full information about the biphoton temporal wave function. Using a coherent state as a reference, we observe this interference and reconstruct the wave function of single-mode biphotons from a low-intensity narrow band squeezed vacuum state.
View Article and Find Full Text PDFWe demonstrate the generation of rubidium-resonant heralded single photons for quantum memories. Photon pairs are created by cavity-enhanced down-conversion and narrowed in bandwidth to 7 MHz with a novel atom-based filter operating by "interaction-free measurement" principles. At least 94% of the heralded photons are atom-resonant as demonstrated by a direct absorption measurement with rubidium vapor.
View Article and Find Full Text PDF