Publications by authors named "Yannic Falke"

Article Synopsis
  • The use of magnetic fields to control colloidal nanoparticles is advancing the development of microrobots for applications like drug delivery and surgery.
  • Researchers demonstrated the ability to control the movement of hematite spindles using dynamic magnetic fields, which is crucial for creating smaller nanorobots.
  • The findings show that the motion patterns of these nanoscale spindles resemble those of larger particles, indicating their potential for effective locomotion in future magnetic nanorobots.
View Article and Find Full Text PDF

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments.

View Article and Find Full Text PDF

We present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area.

View Article and Find Full Text PDF

We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs.

View Article and Find Full Text PDF

A flat energy dispersion of electrons at the Fermi level of a material leads to instabilities in the electronic system and can drive phase transitions. Here we show that the flat band in graphene can be achieved by sandwiching a graphene monolayer by two cesium (Cs) layers. We investigate the flat band by a combination of angle-resolved photoemission spectroscopy experiment and the calculations.

View Article and Find Full Text PDF

The magnetic response of spindle-shaped hematite (α-Fe2O3) nanoparticles was investigated by simultaneous small-angle and wide-angle X-ray scattering (SAXS/WAXS) experiments. The field-dependent magnetic and nematic order parameters of the magnetic single-domain nanospindles in a static magnetic field are fully described by SAXS simulations of an oriented ellipsoid with the implemented Langevin function. The experimental scattering intensities of the spindle-like particles can be modeled simply by using the geometrical (length, radius, size distribution) and magnetic parameters (strength of magnetic field, magnetic moment) obtained from isotropic SAXS and macroscopic magnetization measurements, respectively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj8l9nlcvtnoaur6uodhamatvpk2h8jat): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once