Publications by authors named "Yannan Bin"

Interleukin-6 (IL-6) is a potent glycoprotein that plays a crucial role in regulating innate and adaptive immunity, as well as metabolism. The expression and release of IL-6 are closely correlated with the severity of various diseases. IL-6-inducing peptides are critical for the development of immunotherapy and diagnostic biomarkers for some diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Peptide detectability is key in understanding protein composition and how well peptides can be identified in samples, affecting proteomics analyses.
  • Current methods are limited by using only one type of data representation, which doesn't capture the complexity of peptides.
  • DeepPD, a new deep learning framework that integrates multiple data features and uses the information bottleneck principle, significantly improves peptide detectability predictions and shows strong performance across various datasets.
View Article and Find Full Text PDF

The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides.

View Article and Find Full Text PDF

Background And Objective: Interleukin-6 (IL-6) is the critical factor of early warning, monitoring, and prognosis in the inflammatory storm of COVID-19 cases. IL-6 inducing peptides, which can induce cytokine IL-6 production, are very important for the development of diagnosis and immunotherapy. Although the existing methods have some success in predicting IL-6 inducing peptides, there is still room for improvement in the performance of these models in practical application.

View Article and Find Full Text PDF

Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information.

View Article and Find Full Text PDF

Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types.

View Article and Find Full Text PDF

Motivation: With the great number of peptide sequences produced in the postgenomic era, it is highly desirable to identify the various functions of therapeutic peptides quickly. Furthermore, it is a great challenge to predict accurate multi-functional therapeutic peptides (MFTP) via sequence-based computational tools.

Results: Here, we propose a novel multi-label-based method, named ETFC, to predict 21 categories of therapeutic peptides.

View Article and Find Full Text PDF

Due to the global outbreak of COVID-19 and its variants, antiviral peptides with anti-coronavirus activity (ACVPs) represent a promising new drug candidate for the treatment of coronavirus infection. At present, several computational tools have been developed to identify ACVPs, but the overall prediction performance is still not enough to meet the actual therapeutic application. In this study, we constructed an efficient and reliable prediction model PACVP (Prediction of Anti-CoronaVirus Peptides) for identifying ACVPs based on effective feature representation and a two-layer stacking learning framework.

View Article and Find Full Text PDF
Article Synopsis
  • Phage genome annotation is important for developing phage therapy, but existing tools are often complicated and only offer limited functions.
  • A new platform called PhaGAA has been created to provide a user-friendly and comprehensive solution for annotating phage genomes at both DNA and protein levels.
  • PhaGAA is freely accessible online and aims to assist researchers in advancing experimental biology and phage synthetic biology.
View Article and Find Full Text PDF

Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery.

View Article and Find Full Text PDF

Neuropeptides (NPs) are a particular class of informative substances in the immune system and physiological regulation. They play a crucial role in regulating physiological functions in various biological growth and developmental stages. In addition, NPs are crucial for developing new drugs for the treatment of neurological diseases.

View Article and Find Full Text PDF

With the number of phage genomes increasing, it is urgent to develop new bioinformatics methods for phage genome annotation. Promoter, a DNA region, is important for gene transcriptional regulation. In the era of post-genomics, the availability of data makes it possible to establish computational models for promoter identification with robustness.

View Article and Find Full Text PDF

The bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction.

View Article and Find Full Text PDF

Anti-parasitic peptides (APPs) have been regarded as promising therapeutic candidate drugs against parasitic diseases. Due to the fact that the experimental techniques for identifying APPs are expensive and time-consuming, there is an urgent need to develop a computational approach to predict APPs on a large scale. In this study, we provided a computational method, termed PredAPP (Prediction of Anti-Parasitic Peptides) that could effectively identify APPs using an ensemble of well-performed machine learning (ML) classifiers.

View Article and Find Full Text PDF

An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model.

View Article and Find Full Text PDF

Transmembrane proteins play a vital role in cell life activities. There are several techniques to determine transmembrane protein structures and X-ray crystallography is the primary methodology. However, due to the special properties of transmembrane proteins, it is still hard to determine their structures by X-ray crystallography technique.

View Article and Find Full Text PDF

Background: DNA-binding hot spots are dominant and fundamental residues that contribute most of the binding free energy yet accounting for a small portion of protein-DNA interfaces. As experimental methods for identifying hot spots are time-consuming and costly, high-efficiency computational approaches are emerging as alternative pathways to experimental methods.

Results: Herein, we present a new computational method, termed inpPDH, for hot spot prediction.

View Article and Find Full Text PDF

Identification of driver genes from mass non-functional passenger genes in cancers is still a critical challenge. Here, an effective and no parameter algorithm, named DriverSubNet, is presented for detecting driver genes by effectively mining the mutation and gene expression information based on subnetwork enrichment analysis. Compared with the existing classic methods, DriverSubNet can rank driver genes and filter out passenger genes more efficiently in terms of precision, recall, and F1 score, as indicated by the analysis of four cancer datasets.

View Article and Find Full Text PDF

Blood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression.

View Article and Find Full Text PDF

Hot spot residues at protein-DNA binding interfaces are hugely important for investigating the underlying mechanism of molecular recognition. Currently, there are a few tools available for identifying the hot spot residues in the protein-DNA complexes. In addition, the three-dimensional protein structures are needed in these tools.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor. Radiotherapy (RT) is an important treatment for HNSCC, but not all patients derive survival benefit from RT due to the individual differences on radiosensitivity. A prediction model of radiosensitivity based on multiple omics data might solve this problem.

View Article and Find Full Text PDF

Background: Identification of hot spots in protein-DNA interfaces provides crucial information for the research on protein-DNA interaction and drug design. As experimental methods for determining hot spots are time-consuming, labor-intensive and expensive, there is a need for developing reliable computational method to predict hot spots on a large scale.

Results: Here, we proposed a new method named sxPDH based on supervised isometric feature mapping (S-ISOMAP) and extreme gradient boosting (XGBoost) to predict hot spots in protein-DNA complexes.

View Article and Find Full Text PDF

Multi-drug resistance (MDR) has become one of the greatest threats to human health worldwide, and novel treatment methods of infections caused by MDR bacteria are urgently needed. Phage therapy is a promising alternative to solve this problem, to which the key is correctly matching target pathogenic bacteria with the corresponding therapeutic phage. Deep learning is powerful for mining complex patterns to generate accurate predictions.

View Article and Find Full Text PDF

As hormones in the endocrine system and neurotransmitters in the immune system, neuropeptides (NPs) provide many opportunities for the discovery of new drugs and targets for nervous system disorders. In spite of their importance in the hormonal regulations and immune responses, the bioinformatics predictor for the identification of NPs is lacking. In this study, we develop a predictor for the identification of NPs, named PredNeuroP, based on a two-layer stacking method.

View Article and Find Full Text PDF

Background: Currently, numerous studies indicate that circular RNA (circRNA) is associated with various human complex diseases. While identifying disease-related circRNAs in vivo is time- and labor-consuming, a feasible and effective computational method to predict circRNA-disease associations is worthy of more studies.

Results: Here, we present a new method called SIMCCDA (Speedup Inductive Matrix Completion for CircRNA-Disease Associations prediction) to predict circRNA-disease associations.

View Article and Find Full Text PDF