Publications by authors named "Yann Vitasse"

Despite considerable experimental effort, the physiological mechanisms governing temperate tree species' water and carbon dynamics before the onset of the growing period remain poorly understood. We applied H-enriched water during winter dormancy to the soil of four potted European tree species. After 8 weeks of chilling, hydrogen isotopes in stem, twig and bud water were measured six times during 2 consecutive weeks of forcing conditions (Experiment 1).

View Article and Find Full Text PDF

Earlier spring growth onset in temperate forests is a visible effect of global warming that alters global water and carbon cycling. Consequently, it becomes crucial to accurately predict the future spring phenological shifts in vegetation under different climate warming scenarios. However, current phenological models suffer from a lack of physiological insights of tree dormancy and are rarely experimentally validated.

View Article and Find Full Text PDF

Global warming is affecting the phenological cycles of plants and animals, altering the complex synchronization that has co-evolved over thousands of years between interacting species and trophic levels. Here, we examined how warmer winter conditions affect the timing of budburst in six common European trees and the hatching of a generalist leaf-feeding insect, the spongy moth , whose fitness depends on the synchrony between egg hatch and leaf emergence of the host tree. We applied four different temperature treatments to eggs and twig cuttings, that mimicked warmer winters and reduced chilling temperatures that are necessary for insect diapause and bud dormancy release, using heated open-top chambers (ambient or +3.

View Article and Find Full Text PDF

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.

View Article and Find Full Text PDF

Climate change is shifting the growing seasons of plants, affecting species performance and biogeochemical cycles. Yet how the timing of autumn leaf senescence in Northern Hemisphere forests will change remains uncertain. Using satellite, ground, carbon flux, and experimental data, we show that early-season and late-season warming have opposite effects on leaf senescence, with a reversal occurring after the year's longest day (the summer solstice).

View Article and Find Full Text PDF

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events.

View Article and Find Full Text PDF
Article Synopsis
  • Human activities like cutting down forests, climate change, and introducing new species are hurting wildlife in different ways, especially in land and water environments.
  • Scientists want to understand why these impacts are different in land versus water ecosystems by looking at four main processes: how animals and plants spread, how new species form, which species survive better, and how random changes happen.
  • They hope to find new ways to protect nature by looking at these processes and figuring out how human impacts create different problems in each ecosystem.
View Article and Find Full Text PDF

Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species-site combinations, during 1980-2016 and found that actual green season extensions (GS: 3.

View Article and Find Full Text PDF

Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns.

View Article and Find Full Text PDF

Microclimatic effects (light, temperature) are often neglected in phenological studies and little information is known about the impact of resource availability (nutrient and water) on tree's phenological cycles. Here we experimentally studied spring and autumn phenology in four temperate trees in response to changes in bud albedo (white-painted vs black-painted buds), light conditions (nonshaded vs c. 70% shaded), water availability (irrigated, control and reduced precipitation) and nutrients (low vs high availability).

View Article and Find Full Text PDF
Article Synopsis
  • Warmer climates and extreme droughts threaten forest ecosystems, making it vital to understand how tree species, like silver fir (Abies alba), adapt to these changes.
  • The study examined growth traits and genetic information from 18 provenances of silver fir in Switzerland, revealing three distinct genetic clusters based on their growth responses.
  • Findings indicate that historical recolonization and natural selection influence the growth variability of silver fir, emphasizing the need for genetic and ecological studies to help species adapt to climate change and ensure their survival in European forests.
View Article and Find Full Text PDF

Mountain areas are biodiversity hotspots and provide a multitude of ecosystem services of irreplaceable socio-economic value. In the European Alps, air temperature has increased at a rate of about 0.36°C decade since 1970, leading to glacier retreat and significant snowpack reduction.

View Article and Find Full Text PDF

Over the last decades, spring leaf-out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf-out will continue to advance with further warming because species' effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from -2°C to 10°C for 1, 3, 6 or 12 wk.

View Article and Find Full Text PDF

Temperature manipulation experiments are an effective way for testing plant responses to future climate conditions, especially for predicting shifts in plant phenological events. While passive warming techniques are widely used to elevate temperature in low stature plant communities, active warming has been applied less frequently due to the associated resource requirements. In forest ecosystems, however, active warming is crucial to simulate projected air temperature rises of 3-5 K, especially at the warm (i.

View Article and Find Full Text PDF

Climate warming has substantially advanced spring leaf flushing, but winter chilling and photoperiod co-determine the leaf flushing process in ways that vary among species. As a result, the interspecific differences in spring phenology (IDSP) are expected to change with climate warming, which may, in turn, induce negative or positive ecological consequences. However, the temporal change of IDSP at large spatiotemporal scales remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Late-spring frosts (LSFs) significantly impact plant and animal performance in temperate and boreal regions, yet their geographic distribution and evolutionary effects remain largely unclear.
  • An analysis from 1959 to 2017 assesses LSFs and tree species' resistance strategies, revealing that areas with frequent LSFs have tree species that adapt by leafing out later, while regions where LSFs were rare show species that leaf out quickly.
  • The study predicts that as LSF occurrences rise in formerly unaffected areas like Europe and Asia, about 35% and 26% of their temperate forest areas will face increased frost damage, respectively, compared to only 10% in North America, highlighting the need for informed
View Article and Find Full Text PDF

Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future.

View Article and Find Full Text PDF

Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree-ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.

View Article and Find Full Text PDF

Temperature during a particular period prior to spring leaf-out, the temperature-relevant period (TRP), is a strong determinant of the leaf-out date in temperate-zone trees. Climatic warming has substantially advanced leaf-out dates in temperate biomes worldwide, but its effect on the beginning and length of the TRP has not yet been explored, despite its direct relevance for phenology modeling. Using 1,551 species-site combinations of long-term (1951-2016) in situ observations on six tree species (namely, Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fagus sylvatica, Fraxinus excelsior, and Quercus robur) in central Europe, we found that the advancing leaf-out was accompanied by a shortening of the TRP.

View Article and Find Full Text PDF

The timing of leaf unfolding in temperate woody species is predominantly controlled by the seasonal course of temperature in late winter and early spring. However, quantifying lagged temperature effects on spring phenology is still challenging. Here, we aimed at investigating lagged and potentially non-linear effects of daily maximum temperatures on the probability of leaf unfolding in temperate woody species growing across large elevational gradients.

View Article and Find Full Text PDF

Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system.

View Article and Find Full Text PDF

Leaf phenology is one of the most reliable bioindicators of ongoing global warming in temperate and boreal zones because it is highly sensitive to temperature variation. A large number of studies have reported advanced spring leaf-out due to global warming, yet the temperature sensitivity of leaf-out has significantly decreased in temperate deciduous tree species over the past three decades. One of the possible mechanisms is that photoperiod is limiting further advance to protect the leaves against potential damaging frosts.

View Article and Find Full Text PDF