Tissue level properties are commonly studied using histological stains assessed with qualitative scoring methods. As qualitative evaluation is typically insensitive, quantitative analysis provides additional information about pathological mechanisms, but cannot capture structural heterogeneity across cell subpopulations. However, molecular analyses of cell and nuclear behavior have identified that cell and more recently also nuclear shape are highly associated with cell function and malfunction.
View Article and Find Full Text PDFAging is the largest risk factor for Achilles tendon associated disorders and rupture. Although Achilles tendon macroscale elastic properties are suggested to decline with aging, less is known about the effect of maturity and aging on multiscale viscoelastic properties and their effect on tendon cell behavior. Here, we show dose dependent changes in native multiscale tendon mechanical and structural properties and uncover several nanoindentation properties predicted by tensile mechanics and echogenicity.
View Article and Find Full Text PDFHydrogels that provide mechanical support and sustainably release therapeutics have been used to treat tendon injuries. However, most hydrogels are insufficiently tough, release drugs in bursts, and require cell infiltration or suturing to integrate with surrounding tissue. Here we report that a hydrogel serving as a high-capacity drug depot and combining a dissipative tough matrix on one side and a chitosan adhesive surface on the other side supports tendon gliding and strong adhesion (larger than 1,000 J m) to tendon on opposite surfaces of the hydrogel, as we show with porcine and human tendon preparations during cyclic-friction loadings.
View Article and Find Full Text PDFHydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking.
View Article and Find Full Text PDF