Publications by authors named "Yann O Hermant"

Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties.

View Article and Find Full Text PDF

Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CL, which play a key role in viral replication and present minimal homology with mammalian proteases.

View Article and Find Full Text PDF

In the current global crisis of antimicrobial resistance, antimicrobial peptides represent a promising source of alternative antibiotics. Recently discovered cadaside B, a novel calcium-dependent antibiotic, exhibits potent antimicrobial activity towards Gram-positive pathogens including multi-drug resistant strains. These properties, coupled with a novel structure, non-cytotoxicity, and low likelihood of developing resistance render cadaside B an important synthetic target.

View Article and Find Full Text PDF

Lipidation of polypeptides with a fatty acid to form N-linked lipopeptides can be a time consuming process due to the need to mask other reactive function groups present on the side chains of amino acids. Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology enables the direct lipidation of unprotected peptides containing a free thiol group to afford S-lipidated lipopeptides. A generalized procedure for the synthesis of S-lipopeptides is described which facilities rapid preparation of tens of analogs of lipopeptides from a single thiolated polypeptide precursor.

View Article and Find Full Text PDF

The rise of multidrug resistant bacteria has significantly compromised our supply of antibiotics and poses an alarming medical and economic threat to society. To combat this problem, it is imperative that new antibiotics and treatment modalities be developed, especially those toward which bacteria are less capable of developing resistance. Peptide natural products stand as promising candidates to meet this need as bacterial resistance is typically slow in response to their unique modes of action.

View Article and Find Full Text PDF

Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology provides a facile method for the lipidation of unprotected peptides containing a free thiol group by using a "click" radical-initiated thiol-ene reaction to effect addition to a vinyl ester. The methodology is highly versatile, leading to high conversion rates while maintaining excellent chemoselectivity and tolerance for a large variety of peptide substrates and functional groups. Herein we describe the simple general procedure for the synthesis of a focused library of bioactive S-lipidated antimicrobial peptides via late-stage derivatization using solution-phase CLipPA lipidation.

View Article and Find Full Text PDF