Publications by authors named "Yann Malaise"

Article Synopsis
  • Human exposure to foodborne inorganic nanoparticles (NPs), like titanium dioxide (TiO), raises concerns about health risks, necessitating better testing methods.
  • The study utilized enteroid-derived monolayers (EDMs) from mouse intestinal organoids as an in vitro model to assess the toxicity of TiO, showing clear responses to varying doses.
  • Findings indicated that TiO exposure led to increased cell differentiation markers, apoptosis, genotoxicity, and disrupted gene expressions related to gut health, establishing EDMs as a reliable model for testing foodborne NPs' effects on the intestinal barrier.
View Article and Find Full Text PDF

Background: The increasing prevalence of food sensitivities has been attributed to changes in gut microenvironment; however, ubiquitous environmental triggers such as inorganic nanoparticles (NPs) used as food additives have not been thoroughly investigated.

Objectives: We explored the impact of the NP-structured food-grade silicon dioxide () on intestinal immune response involved in oral tolerance (OT) induction and evaluated the consequences of oral chronic exposure to this food-additive using a mouse model of OT to ovalbumin (OVA) and on gluten immunopathology in mice expressing the celiac disease risk gene, HLA-DQ8.

Methods: Viability, proliferation, and cytokine production of mesenteric lymph node (MLN) cells were evaluated after exposure to .

View Article and Find Full Text PDF

Bisphenol (BP)A is an endocrine disruptor (ED) widely used in thermal papers. Regulatory restrictions have been established to prevent risks for human health, leading to BPA substitution by structural analogues, like BPS and BPF. We previously demonstrated that oral perinatal exposure to BPA had long-term consequences on immune responses later in life.

View Article and Find Full Text PDF

Bisphenol (BP) A, a known food contaminant, is a possible risk factor in the epidemic of non-communicable diseases (NCD) including food intolerance and inflammatory bowel diseases (IBD). Regulatory restrictions regarding BPA usage led to BPA removal and replacement by poorly described substitutes, like BPS or BPF (few data on occurrence in food and human samples and biological effect). Oral tolerance protocol to ovalbumin (OVA) in WT mice and Il10 mice prone to IBD were used respectively to address immune responses towards food and microbial luminal antigens following BP oral exposure.

View Article and Find Full Text PDF

The endocrine disruptor and food contaminant bisphenol A (BPA) is frequently present in consumer plastics and can produce several adverse health effects participating in the development of inflammatory and autoimmune diseases. Regulatory restrictions have been established to prevent risks for human health, leading to the substitution of BPA by structural analogues, such as bisphenol S (BPS) and F (BPF). In this study, we aimed at comparing the in vitro impact of these bisphenols from 0.

View Article and Find Full Text PDF

Background: Bisphenol A (BPA), one of the highest-volume chemicals produced worldwide, has been identified as an endocrine disruptor. Many peer-reviewing studies have reported adverse effects of low dose BPA exposure, particularly during perinatal period (gestation and/or lactation). We previously demonstrated that perinatal oral exposure to BPA (via gavage of mothers during gestation and lactation) has long-term consequences on immune response and intestinal barrier functions.

View Article and Find Full Text PDF

Inflammatory bowel disease patients have a greatly increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Using three models of CAC, we find that sustained inflammation triggers 8-oxoguanine DNA lesions. Strikingly, antioxidants or iNOS inhibitors reduce 8-oxoguanine and polyps in CAC models.

View Article and Find Full Text PDF

In a recent issue of Science, Wilson et al. (2019) provide direct evidence that the bacterial-produced colibactin alkylates DNA in vivo, resulting in DNA adducts, which mediates its genotoxic effect. This work reinforces the role of colibactin-producing bacteria in colon cancer pathogenesis.

View Article and Find Full Text PDF

Epidemiology evidenced the Bisphenol A (BPA), a chemical found in daily consumer products, as an environmental contributor to obesity and type II diabetes (T2D) in Humans. However, the BPA-mediated effects supporting these metabolic disorders are still unknown. Knowing that obesity and T2D are associated with low-grade inflammation and gut dysbiosis, we performed a longitudinal study in mice to determine the sequential adverse effects of BPA on immune system and intestinal microbiota that could contribute to the development of metabolic disorders.

View Article and Find Full Text PDF

The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance.

View Article and Find Full Text PDF