Publications by authors named "Yann Le Petillon"

Background: Vertebrates develop their peripheral nervous system (PNS) from transient unique embryonic structures, the neural crest, and the ectodermal placodes that are located at the border of the forming central nervous system. By contrast, in the invertebrate chordates, amphioxus and ascidians, a large part of the PNS originates at the opposite of the embryo, in the ventral ectoderm. In both groups, a biphasic mechanism regulates ventral PNS formation: high BMP levels specify a neurogenic territory within which glutamatergic epidermal sensory neuron formation is controlled by the Notch pathway.

View Article and Find Full Text PDF

Studies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages.

View Article and Find Full Text PDF

In the last decades, the cephalochordate amphioxus has reached a peculiar place in research laboratories as an excellent animal model to answer Evo/Devo questions. Nevertheless, mainly due to its restricted spawning season and to the small size of its embryos, only a few basic techniques in developmental biology could be used until recently. Fortunately, these last years, and thanks to the development of high-throughput techniques, new technical approaches have been possible, such as comparative transcriptomics and/or genomics.

View Article and Find Full Text PDF

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period.

View Article and Find Full Text PDF

During embryonic development, cells of metazoan embryos need to communicate in order to construct the correct bodyplan. To do so, they use several signals that usually act through interactions between ligands and receptors. Interestingly, only a few pathways are known to be fundamental during animal development, and they are usually found in all the major metazoan clades, raising the following question: how have evolution of the actors and of the functions of these pathways participated in the appearance of the current diversity of animal morphologies? The chordate lineage comprises vertebrates, their sister group the urochordates, and the cephalochordates (i.

View Article and Find Full Text PDF

Neural induction is the process through which pluripotent cells are committed to a neural fate. This first step of Central Nervous System formation is triggered by the "Spemann organizer" in amphibians and by homologous embryonic regions in other vertebrates. Studies in classical vertebrate models have produced contrasting views about the molecular nature of neural inducers and no unifying scheme could be drawn.

View Article and Find Full Text PDF

Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates.

View Article and Find Full Text PDF

Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are members of the Transforming Growth Factor-β (TGF-β) family implicated in many developmental processes in metazoans such as embryo axes specification. Their wide variety of actions is in part controlled by inhibitors that impede the interaction of BMPs with their specific receptors. Here, we focused our attention on the Differential screening-selected gene Aberrative in Neuroblastoma (DAN) family of inhibitors.

View Article and Find Full Text PDF

Background: The basally divergent phylogenetic position of amphioxus (Cephalochordata), as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae.

View Article and Find Full Text PDF

Genetics of Holoprosencephaly (HPE), a congenital malformation of the developing human forebrain, is due to multiple genetic defects. Most genes that have been implicated in HPE belong to the sonic hedgehog signaling pathway. Here we describe a new candidate gene isolated from array comparative genomic hybridization redundant 6qter deletions, DELTA Like 1 (DLL1), which is a ligand of NOTCH.

View Article and Find Full Text PDF