Terahertz time-domain imaging (THz-TDI) and spectral-domain optical coherence tomography (SD-OCT) are two techniques capable of providing 3D datasets from which depth profiles and cross-sectional images of an object can be derived. They are novel photonics technologies of particular relevance to the field of heritage science, for which the comprehension of the stratigraphic structure of a cultural heritage object may help in the understanding of its artistic technology and state of preservation. The differences in imaging depth, field of view, and axial/lateral resolutions of the two imaging techniques provide different but complementary information of the same scene.
View Article and Find Full Text PDFBackground: Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line.
Results: In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor.