Publications by authors named "Yann Humeau"

The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies.

View Article and Find Full Text PDF

The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain.

View Article and Find Full Text PDF

The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval.

View Article and Find Full Text PDF

Imbalance between excitation and inhibition in the cerebral cortex is one of the main theories in neuropsychiatric disorder pathophysiology. Cortical inhibition is finely regulated by a variety of highly specialized GABAergic interneuron types, which are thought to organize neural network activities. Among interneurons, axo-axonic cells are unique in making synapses with the axon initial segment of pyramidal neurons.

View Article and Find Full Text PDF

Regulation of synaptic neurotransmitter receptor content is a fundamental mechanism for tuning synaptic efficacy during experience-dependent plasticity and behavioral adaptation. However, experimental approaches to track and modify receptor movements in integrated experimental systems are limited. Exploiting AMPA-type glutamate receptors (AMPARs) as a model, we generated a knock-in mouse expressing the biotin acceptor peptide (AP) tag on the GluA2 extracellular N-terminal.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and the best-described monogenic cause of autism. CGG-repeat expansion in the FMR1 gene leads to FMR1 silencing, loss-of-expression of the Fragile X Mental Retardation Protein (FMRP), and is a common cause of FXS. Missense mutations in the FMR1 gene were also identified in FXS patients, including the recurrent FMRP-R138Q mutation.

View Article and Find Full Text PDF

Survival depends on the ability of animals to select the appropriate behavior in response to threat and safety sensory cues. However, the synaptic and circuit mechanisms by which the brain learns to encode accurate predictors of threat and safety remain largely unexplored. Here, we show that frontal association cortex (FrA) pyramidal neurons of mice integrate auditory cues and basolateral amygdala (BLA) inputs non-linearly in a NMDAR-dependent manner.

View Article and Find Full Text PDF

Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active-zone proteins and SV clusters.

View Article and Find Full Text PDF

Activity-dependent synaptic plasticity has since long been proposed to represent the subcellular substrate of learning and memory, one of the most important behavioral processes through which we adapt to our environment. Despite the undisputed importance of synaptic plasticity for brain function, its exact contribution to learning processes in the context of cellular and connectivity modifications remains obscure. Causally bridging synaptic and behavioral modifications indeed remains limited by the available tools to measure and control synaptic strength and plasticity in vivo under behaviorally relevant conditions.

View Article and Find Full Text PDF

The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA).

View Article and Find Full Text PDF

Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington's disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD.

View Article and Find Full Text PDF
Article Synopsis
  • The ARX transcription factor is crucial for developing specific neurons in the brain, and mutations like the c.428_451dup24 are linked to various neurodevelopmental disorders, including intellectual disability and motor skill issues.
  • Research generated a partially humanized mouse model with this specific mutation, revealing behaviors like hyperactivity and fine motor defects, as well as changes in memory.
  • Molecular analysis indicated abnormal development of interneurons in the affected mice, offering a valuable model to study the mutation's effects and potential treatments in humans.
View Article and Find Full Text PDF

Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse.

View Article and Find Full Text PDF
Article Synopsis
  • The amygdala, a key area for processing emotions and fear responses, has been extensively researched for its synaptic connectivity and behavior-related functions in animals, particularly in response to threats.
  • Studies show that different sub-nuclei of the amygdala are crucial for eliciting behaviors like freezing or escaping through learned fear responses in models like mice.
  • Many genes linked to intellectual disabilities in humans have been investigated using rodent models to explore how mutations can disrupt social behaviors and learning related to fear, though the role of these genes in amygdala synaptic function remains underexplored.
View Article and Find Full Text PDF
Article Synopsis
  • - Koolen-de Vries syndrome (KdVS) is a genetic disorder linked to developmental issues like intellectual disability, friendly behavior, and physical malformations, caused by deletions or variants in the 17q21.31 region or the KANSL1 gene.
  • - Research used mouse models to explore the effects of these genetic alterations, revealing changes in weight, activity, social behavior, and memory, along with brain structure differences.
  • - Findings indicated a connection between the KANSL1 gene and KdVS symptoms, highlighting distinct social behavior patterns and suggesting other genes in the 17q21.31 region may also play a role, thus aiding future therapeutic strategies.
View Article and Find Full Text PDF
Article Synopsis
  • Loss of function mutations in the OPHN1 gene lead to syndromic intellectual disability (ID) characterized by issues like cerebellar hypoplasia and enlarged brain ventricles.
  • Research indicates that cognitive disorders linked to OPHN1 may stem from abnormal synaptic transmission, and variants of this gene have also been associated with autism and schizophrenia.
  • Treatment with Fasudil, a Rho Kinase and Protein Kinase A inhibitor, shows promise in improving synaptic function and alleviating hyperactivity and memory issues in a mouse model, though it may not fully address all cognitive deficits, especially in adult brains.
View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders caused by the interaction between genetic vulnerability and environmental factors. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in multiple aspects of brain development and function. Previous studies have investigated miRNAs expression in ASD using non-neural cells like lymphoblastoid cell lines (LCL) or postmortem tissues.

View Article and Find Full Text PDF

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models.

View Article and Find Full Text PDF

Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability (ID) and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work was to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with ID.

View Article and Find Full Text PDF

The process of learning mainly depends on the ability to store new information, while the ability to retrieve this information and express appropriate behaviors are also crucial for the adaptation of individuals to environmental cues. Thereby, all three components contribute to the cognitive fitness of an individual. While a lack of behavioral adaptation is a recurrent trait of intellectually disabled patients, discriminating between memory formation, memory retrieval or behavioral expression deficits is not easy to establish.

View Article and Find Full Text PDF

Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling.

View Article and Find Full Text PDF

More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice.

View Article and Find Full Text PDF

Loss-of-function mutations in the gene encoding for the RhoGAP protein of oligophrenin-1 (OPHN1) lead to cognitive disabilities (CDs) in humans, yet the underlying mechanisms are not known. Here, we show that in mice constitutive lack of Ophn1 is associated with dysregulation of the cyclic adenosine monophosphate/phosphate kinase A (cAMP/PKA) signalling pathway in a brain-area-specific manner. Consistent with a key role of cAMP/PKA signalling in regulating presynaptic function and plasticity, we found that PKA-dependent presynaptic plasticity was completely abolished in affected brain regions, including hippocampus and amygdala.

View Article and Find Full Text PDF

Intellectual disorders (IDs) have been regularly associated with morphological and functional deficits at glutamatergic synapses in both humans and rodents. How these synaptic deficits may lead to the variety of learning and memory deficits defining ID is still unknown. Here we studied the functional and behavioral consequences of the ID gene il1rapl1 deficiency in mice and reported that il1rapl1 constitutive deletion alters cued fear memory formation.

View Article and Find Full Text PDF

Tumor Necrosis Factor Receptor-Associated Factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies. However, TRAF4 does not fit the paradigm of TRAF function in immune and inflammatory responses. Its physiological and molecular functions remain poorly understood.

View Article and Find Full Text PDF