Publications by authors named "Yanlong Gu"

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

An efficient Ni-based heterogeneous catalyst from pine needles urban waste valorization was designed and developed with a resource recycling strategy. The Ni/PiNe catalyst was fully characterized and tested in the Suzuki-Miyaura coupling under microwave irradiation. Although Ni is a promising candidate for replacing Pd-based catalytic systems, it generally requires a high catalyst amount and the exploitation of ligands and additives to enhance the reaction rate.

View Article and Find Full Text PDF

The main objective of the present study is to investigate the potency of new synthesized hydroxycarbamoyl phosphinic acid derivatives in modulating cytotoxic fibrillogenesis of hen egg white lysozyme (HEWL), as a common model in protein aggregation studies. Hydroxycarbamoyl phosphinic acid derivatives were prepared by the reaction of α-hydroxyalkylphosphinic acids with isocyanates (or isothiocyanates) in the presence of trimethylsilyl chloride (TMSCl). The designed process involves the condensation reaction leading to formation of new C sp-P bond formation.

View Article and Find Full Text PDF
Article Synopsis
  • * Characterization techniques (BET, FTIR, SEM, etc.) confirmed that the catalysts had mesoporous structures and acidic sites, indicating they were effective for catalysis.
  • * Results showed that the manganese-based catalyst (NH-MK10-Bpy-Mn) was more effective than the zinc-based one, achieving a high conversion rate in the desired reaction, and both catalysts were reusable, highlighting their potential in industrial applications.
View Article and Find Full Text PDF

In this work kaolinite nanotubes (KNT) were obtained from commercial kaolin AKF-78 (Uzbekistan) by starting material sequential intercalation by DMSO and methanol, followed by treatment with a cetyltrimethylammonium chloride solution. Acid functionalization of KNT for catalytic applications was successfully performed for the first time using a two-step treatment with piranha solution (HSO-HO), which resulted in the removal of organic impurities as synthetic artifacts and an increase in specific surface area by 3.9 times (up to 159 m g), pore volume by 1.

View Article and Find Full Text PDF

Prostaglandin-endoperoxide synthase 2 (PTGS2), a common biological macromolecule, is pivotal for innate immunity and pathogen recognition. In this study, we identified and characterized a CcPTGS2a-like gene in the common carp (Cyprinus carpio) with an open reading frame (ORF) of 1821 bp and epidermal growth factor and peroxidase domains. Our multiple sequence analysis revealed high homology between the amino acid sequence of CcPTGS2a-like and those of its homologs in other fish.

View Article and Find Full Text PDF

The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N adsorption/desorption (BET/the BJH) the correctness of its formation has been proven.

View Article and Find Full Text PDF

Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites.

View Article and Find Full Text PDF

Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations.

View Article and Find Full Text PDF

Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change.

View Article and Find Full Text PDF

Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P.

View Article and Find Full Text PDF

Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst.

View Article and Find Full Text PDF

Herein, we report the design and synthesis of Co-MOF-71/imidazole/SOH as a novel porous catalyst with sulfonic acid tags. The structure and morphology of the catalyst were investigated using various techniques such as Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM), SEM elemental mapping, energy-dispersive X-ray spectroscopy, Barret-Joyner-Halenda, and N adsorption-desorption isotherms. Co-MOF-71/imidazole/SOH was studied in the preparation of novel pyrazolo[3,4-]pyridines under mild and green conditions via a cooperative vinylogous anomeric-based oxidation.

View Article and Find Full Text PDF

Recently, doping metals into graphitic carbon nitride (g-CN) is considered for environmental applications and organic reactions. In this study, we used ferrocene as a source of Fe to dope iron onto g-CN. The scaffold of the internal electric field is presented as an impressive strategy to increase photocatalytic activities.

View Article and Find Full Text PDF

Invited for this month's cover is the groups of Jiang Huang and Yanlong Gu at Huazhong University of Science and Technology. The image shows a new method for the separation of dimethyl sulfoxide from a reaction solution of synthesizing 5-hydroxymethylfurfural by means of using a cellulose microgel fabricated by electron beam irradiation as a bio-based absorbant. The Research Article itself is available at 10.

View Article and Find Full Text PDF

GSDME is the only direct executor of caspase-dependent pyroptosis in both canonical and non-canonical inflammasomes known to date in fish, and plays an important role in anti-bacterial infection and inflammatory response. In order to determine the regulation of GSDMEa on antibacterial infection in innate immune response, the gene in common carp () was first identified and characterized, and then its function related to immune defense was investigated. Our results showed that the expressions of GSDMEa at the mRNA and protein levels were both significantly increased after intraperitoneal infection at the early stage than that in the control group.

View Article and Find Full Text PDF

For a long time, it was believed that invertebrates do not possess acquired immunity and mainly rely on innate immunity for protection against pathogens infection. However, an increasing number of studies have suggested that some form of "immune memory" can be initiated in invertebrates after primary exposure to the pathogen, which was defined as "specific immune priming". In the present study, two experiments were carried out to determine whether specific immune priming can be induced in crayfish (Procambarus clarkii) by Aeromonas veronii, if so, to identify the underlying mechanism.

View Article and Find Full Text PDF

Oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) [(VO)TPP][(TCM)] was designed, synthesized and characterized by various techniques such as FT-IR, EDX, SEM equipped with EDX mappings, CHN elemental analysis, ICP-OES, XRD, SEM, TEM, TGA, DTA, DRS, Kubelka-Munk function (Tauc's plot), and UV-Vis analyses. Then, [(VO)TPP][(TCM)] was used as a benign and expedient catalyst for the synthesis of numerous heterocyclic compounds such as 5-amino-7-(aryl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 5-amino-7-(aryl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 7-(aryl)-7,12-dihydro-5H-isochromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidin-5-ones, and 4-(aryl)-2-(1H-indol-3-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitriles under solvent-free conditions at 100 °C via a cooperative geminal-vinylogous anomeric based oxidation.

View Article and Find Full Text PDF

In this study, an efficient method for the separation of 5-hydroxymethylfurfural by the specific adsorption of dimethyl sulfoxide (DMSO) with cellulose microgels fabricated by electron beam irradiation was developed. The cellulose microgel was recovered and reused although this was accompanied by a decrease in the separation efficiency. A series of characterizations, including ultraviolet and infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and swelling ability tests, were performed to determine the adsorption behavior of the chemical structures of the microgel toward DMSO.

View Article and Find Full Text PDF

A series of -(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles was synthesised and screened for their potential to inhibit kinases and exhibit anticancer activity against primary patient-derived glioblastoma 2D cells and 3D neurospheres. A collection of 10 compounds was evaluated against glioma cell lines, with compound exhibiting promising glioma growth inhibitory properties. Compound was screened against 139 purified kinases and exhibited low micromolar activity against kinase AKT2/PKBβ.

View Article and Find Full Text PDF

A highly efficient and elegant diversity-oriented reaction paradigm employing atropaldehyde acetals as new dual C2/C3 synthons was developed under metal-free conditions using glycine esters as the counterpart reagents, which allowed rapid synthesis of two important nitrogen-containing heterocycles, pyrrolo[1,2-a]quinolines and 3,5-diarylpyridines. The divergent products are subtly controlled by the manipulation of the substitutional groups of glycine esters. When a N-arylglycine ester was used, pyrrolo[1,2-a]quinolines can be formed through cascade oxidative C-C cleavage/multiple cyclization.

View Article and Find Full Text PDF

In this work, a new nano-structured catalyst with phosphorus acid moieties, synthesized by the reaction of carbon quantum dots (CQDs) and phosphorus acid under refluxing EtOH. The structure and morphology of CQDs-N(CHPOH) were fully characterized using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric (TG) analysis, fluorescence and X-ray diffraction (XRD) measurements. The new CQDs-N(CHPOH) catalyst was successfully used for the synthesis of 2-amino-6-(2-methyl-1-indol-3-yl)-4-phenyl-4-pyran-3,5-dicarbonitriles by the one-pot reaction of various aromatic aldehydes, 3-(1-indol-3-yl)-3-oxopropanenitrile derivatives and malononitrile in refluxing EtOH and/or ultrasonic irradiation conditions.

View Article and Find Full Text PDF

Herein, the synthesis and characterization of a triazine-based magnetic ionic porous organic polymer are reported. The structure, morphology, and components of the prepared structure have been investigated with several spectroscopic and microscopic techniques such as FT-IR, EDX, elemental mapping, TGA/DTA, SEM, TEM, VSM, and BET analysis. Also, catalytic application of the prepared triazine-based magnetic ionic porous organic polymer was investigated for the synthesis of hybrid pyridine derivatives bearing indole, triazole and sulfonamide groups.

View Article and Find Full Text PDF

An efficient Pd-catalyzed direct C-H arylation of pyrrolo[1,2-]quinoxalines with aryl iodides is described, providing a selective route toward a series of 1-arylated and 1,3-diarylated pyrrolo[1,2-]quinoxalines in good yields. This method features a broad substrate scope, good functional group tolerance and gram-scale synthesis. Furthermore, the C3-thiocyanation of the arylated product is also achieved.

View Article and Find Full Text PDF

Acid-catalyzed tandem reactions of atropaldehyde acetals were established for the synthesis of three important molecules, 2,2-disubstituted indolin-3-ones, naphthofurans and stilbenes. The synthesis was realized using novel reaction cascades, which involved the same two initial steps: (i) S2' substitution, in which the atropaldehyde acted as an electrophile; and (ii) oxidative cleavage of the carbon-carbon bond of the generated phenylacetaldehyde-type products. Compared with literature methods, the present protocol not only avoided the use of expensive noble metal catalysts, but also enabled a simple operation.

View Article and Find Full Text PDF