Diamond nanopillar arrays can enhance the fluorescence collection of diamond color centers, playing a crucial role in quantum communication and quantum sensing. In this paper, the preparation of diamond nanopillar arrays was realized by the processes of polystyrene (PS) sphere array film preparation, PS sphere etching shrinkage control, tilted magnetron sputtering of copper film, and oxygen plasma etching. Closely aligned PS sphere array films were prepared on the diamond surface by the gas-liquid interfacial method, and the effects of ethanol and dodecamethylacrylic acid solutions on the formation of the array films were discussed.
View Article and Find Full Text PDFCorrection for 'Direct N-H/α,α,β,β-C(sp)-H functionalization of piperidine via an azomethine ylide route: synthesis of spirooxindoles bearing 3-substituted oxindoles' by Yanlong Du et al., Chem. Commun.
View Article and Find Full Text PDFA protocol for the direct functionalization of N-H/α,α,β,β-C(sp)-H of piperidine without any metal or external oxidants is reported. This reaction is promoted by 4-(trifluoromethyl)benzoic acid via an azomethine ylide intermediate. This is a simple method for the synthesis of spirooxindoles bearing 3-substituted oxindole moieties.
View Article and Find Full Text PDFA DABCO-catalyzed domino reaction between methyleneoxindoles and allenoates which enables the direct synthesis of spirooxindoles is reported. This is the first example of a non-substituted allenoate to act as a four-carbon synthon in a tertiary amine-catalyzed reaction.
View Article and Find Full Text PDFAn endo-1,4-β-xylanase-encoding gene, xyn11B, was cloned from the thermophilic fungus Humicola insolens Y1. The gene encodes a multimodular xylanase that consists of a typical hydrophobic signal sequence, a catalytic domain of glycoside hydrolase (GH) family 11, a glycine-rich linker, and a family 1 carbohydrate binding module (CBM1). Deduced Xyn11B shares the highest identity of 74% with a putative xylanase from Podospora anserina S mat+.
View Article and Find Full Text PDFThree xylanase genes (xynA, xynB, xynC) of glycosyl hydrolase family 10 were identified in Humicola insolens Y1. The deduced protein sequences showed the highest identity of ⩽83% to known fungal xylanases and of ⩽38% with each other. Recombinant XynA-C produced in Pichia pastoris showed optimal activities at pH 6.
View Article and Find Full Text PDF