The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method.
View Article and Find Full Text PDFSmart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.
View Article and Find Full Text PDFA smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m·h·bar to 1088 L·m·h·bar.
View Article and Find Full Text PDF