Publications by authors named "Yanlin Fan"

Vitamin C (VC) plays an essential role in fish physiological function and normal growth. However, its effects and requirement of coho salmon (Walbaum, 1792) are still unknown. Based on the influences on growth, serum biochemical parameters, and antioxidative ability, an assessment of dietary VC requirement for coho salmon postsmolts (183.

View Article and Find Full Text PDF

LysR-type transcriptional regulators (LTTRs), which function in diverse biological processes in prokaryotes, are composed of a conserved structure with an N-terminal DNA-binding domain (DBD) and a C-terminal signal-sensing regulatory domain (RD). LTTRs that sense and respond to the same signal are often functionally exchangeable in bacterial species across wide phyla, but this phenomenon has not been demonstrated for the HO-sensing and -responding OxyRs. Here, we systematically examined the biochemical and structural determinants differentiating activator-only OxyRs from dual-activity ones by comparing OxyRs from two , Escherichia coli and Shewanella oneidensis.

View Article and Find Full Text PDF

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode , encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein.

View Article and Find Full Text PDF

Cohesin SA1 (STAG1) and SA2 (STAG2) are key components of the cohesin complex. Previous studies have highlighted the unique contributions by SA1 and SA2 to 3D chromatin organization, DNA replication fork progression, and DNA double-strand break (DSB) repair. Recently, we discovered that cohesin SA1 and SA2 are DNA binding proteins.

View Article and Find Full Text PDF

Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner.

View Article and Find Full Text PDF

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown.

View Article and Find Full Text PDF

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles.

View Article and Find Full Text PDF

Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown.

View Article and Find Full Text PDF

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion.

View Article and Find Full Text PDF