Publications by authors named "Yankovich T"

State-of-the-art dose assessment models were applied to estimate doses to the population in urban areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Assessment results were compared among five models, and comparisons of model predictions with actual measurements were also made. Assessments were performed using both probabilistic and deterministic approaches.

View Article and Find Full Text PDF

The IAEA fundamental safety objective isand this must be done ', while ensuring that people and the environment, present and future are protected against radiation risks (IAEA 2006No. SF-1). In addition,(IAEA 2006No.

View Article and Find Full Text PDF

In response to changing international recommendations and national requirements, a number of assessment approaches, and associated tools and models, have been developed over the last circa 20 years to assess radiological risk to wildlife. In this paper, we summarise international intercomparison exercises and scenario applications of available radiological assessment models for wildlife to aid future model users and those such as regulators who interpret assessments. Through our studies, we have assessed the fitness for purpose of various models and tools, identified the major sources of uncertainty and made recommendations on how the models and tools can best be applied to suit the purposes of an assessment.

View Article and Find Full Text PDF

Risk assessment provides a key input for determining the need for and extent of remedial actions necessary for sites contaminated with naturally occurring radioactive material or nuclear legacy sites. The choice of a modelling approach for risk assessment, and the corresponding toolsets should fit the assessment context, taking account of the complexity, and be clearly related to the questions to be addressed in the decision-making process. One of the objectives of Working Group 1 of IAEA Modelling and Data for Radiological Impact Assessments II (MODARIA II) Programme is to perform intermodel comparisons for case studies of selected sites, in particular, to help illustrate the applicability of different models and approaches as inputs to decision-making processes.

View Article and Find Full Text PDF

The International Atomic Energy Agency (IAEA) has organised programmes on the development, comparison and testing of environmental assessment models and approaches for estimating the radiation exposure of humans and wildlife since the 1980s. The latest of these programmes was called MODARIA (Modelling and Data for Radiological Impact Assessment) and was run in two phases from 2012 to 2015 (MODARIA I) and 2016 to 2019 (MODARIA II). Both phases of the MODARIA programme had the overall objective to improve capabilities in the field of environmental transfer of radionuclides and public and non-human biota exposures assessment, by means of acquisition of improved data for model testing and comparison, reaching consensus on modelling philosophies, approaches and parameter values and building an international forum for the exchange of information.

View Article and Find Full Text PDF

The IAEA's model testing programmes have included a series of Working Groups concerned with modelling radioactive contamination in urban environments. These have included the Urban Working Group of Validation of Environmental Model Predictions (1988-1994), the Urban Remediation Working Group of Environmental Modelling for Radiation Safety (EMRAS) (2003-2007), the Urban Areas Working Group of EMRAS II (2009-2011), the Urban Environments Working Group of (Modelling and Data for Radiological Impact Assessments) MODARIA I (2013-2015), and most recently, the Urban Exposures Working Group of MODARIA II (2016-2019). The overarching objective of these Working Groups has been to test and improve the capabilities of computer models used to assess radioactive contamination in urban environments, including dispersion and deposition processes, short-term and long-term redistribution of contaminants following deposition events, and the effectiveness of various countermeasures and other protective actions, including remedial actions, in reducing contamination levels, human exposures, and doses to humans.

View Article and Find Full Text PDF

A number of past industrial activities and accidents have resulted in the radioactive contamination of large areas at many sites around the world, giving rise to a need for remediation. According to the International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA), such situations should be managed as existing exposure situations (ExESs). Control of exposure to the public in ExESs is based on the application of appropriate reference levels (RLs) for residual doses.

View Article and Find Full Text PDF

The International Commission on Radiological Protection (ICRP) recognises three types of exposure situations: planned, existing, and emergency. In all three situations, the release of radionuclides into the natural environment leads to exposures of non-human biota, as well as the potential for exposures of the public. This paper describes how the key principles of the ICRP system of radiological protection apply to non-human biota and members of the public in each of these exposure situations.

View Article and Find Full Text PDF

During the past decades, many specialised networks have formed to meet specific radioecological objectives, whether regional or sectorial (purpose-oriented). Regional networks deal with an array of radioecological issues related to their territories. Examples include the South Pacific network of radioecologists, and the European network of excellence in radioecology.

View Article and Find Full Text PDF

We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches.

View Article and Find Full Text PDF

Many wetlands support high biodiversity and are protected sites, but some are contaminated with radionuclides from routine or accidental releases from nuclear facilities. This radiation exposure needs to be assessed to demonstrate radiological protection of the environment. Existing biota dose models cover generic terrestrial, freshwater, and marine ecosystems, not wetlands specifically.

View Article and Find Full Text PDF

A detailed survey was conducted to quantify the spatial distribution of (14)C in Sphagnum moss and underlying soil collected in Duke Swamp. This wetland environment receives (14)C via groundwater pathways from a historic radioactive Waste Management Area (WMA) on Atomic Energy Canada Limited (AECL)'s Chalk River Laboratories (CRL) site. Trends in (14)C specific activities were evaluated with distance from the sampling location with the maximum (14)C specific activity (DSS-35), which was situated adjacent to the WMA and close to an area of groundwater discharge.

View Article and Find Full Text PDF

The application of the concentration ratio (CR) to predict radionuclide activity concentrations in wildlife from those in soil or water has become the widely accepted approach for environmental assessments. Recently both the ICRP and IAEA have produced compilations of CR values for application in environmental assessment. However, the CR approach has many limitations, most notably, that the transfer of most radionuclides is largely determined by site-specific factors (e.

View Article and Find Full Text PDF

A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data.

View Article and Find Full Text PDF

Duke Swamp is a wetland ecosystem that receives (14)C via a groundwater pathway originating from a waste management area on Atomic Energy Canada Limited's Chalk River Laboratories site. This groundwater reaches the surface of the swamp, resulting in relatively high (14)C levels over an area of 146 m(2). The objective of this study was to quantify (14)C concentrations in flora and fauna inhabiting areas of Duke Swamp over the gradient of (14)C activity concentrations in moss to determine whether (14)C specific activities in receptor biota reflect the localized nature of the groundwater source in the swamp.

View Article and Find Full Text PDF

Environmental assessments to evaluate potentials risks to humans and wildlife often involve modelling to predict contaminant exposure through key pathways. Such models require input of parameter values, including concentration ratios, to estimate contaminant concentrations in biota based on measurements or estimates of concentrations in environmental media, such as water. Due to the diversity of species and the range in physicochemical conditions in natural ecosystems, concentration ratios can vary by orders of magnitude, even within similar species.

View Article and Find Full Text PDF

An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CRwo-media) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values.

View Article and Find Full Text PDF

Claudins are tight junction proteins with claudin-6 (CLDN6) expression mostly restricted to embryonic and fetal life. Previously reported gene expression microarray analysis showed an increased level of CLDN6 in atypical teratoid rhabdoid tumors (AT/RT) compared with other central nervous system (CNS) tumors and sarcomas. However, there exist conflicting data on expression of CLDN6 as assessed by immunohistochemistry in CNS tumors.

View Article and Find Full Text PDF

The radiological assessment of non-human biota to demonstrate protection is now accepted by a number of international and national bodies. Therefore, it is necessary to develop a scientific basis to assess and evaluate exposure of biota to ionizing radiation. Radionuclides from the Ignalina Nuclear Power Plant (Lithuania) were discharged into Lake Druksiai cooling pond.

View Article and Find Full Text PDF

Using the micronucleus assay, decreased levels of DNA damage were found after high dose ionizing radiation exposure of liver cells taken from frogs inhabiting a natural environment with above-background levels of ionizing radiation, compared to cells taken from frogs inhabiting background areas. The data obtained from a small number of animals suggest that stress present in the above-background environment could induce an adaptive response to ionizing radiation. This study did not reveal harmful effects of exposure to low levels of radioactivity.

View Article and Find Full Text PDF

To improve understanding of environmental tritium behaviour, the International Atomic Energy Agency (IAEA) included a Tritium and C-14 Working Group (WG) in its EMRAS (Environmental Modelling for Radiation Safety) program. One scenario considered by the WG involved the prediction of time-dependent tritium concentrations in freshwater mussels that were subjected to an abrupt increase in ambient tritium levels. The experimental data used in the scenario were obtained from a study in which freshwater Barnes mussels (Elliptio complanata) were transplanted from an area with background tritium concentrations to a small Canadian Shield lake that contains elevated tritium.

View Article and Find Full Text PDF

Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle).

View Article and Find Full Text PDF

Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups.

View Article and Find Full Text PDF

In order to put dose-rates derived in environmental impact assessments into context, the International Commission on Radiological Protection (ICRP) has recommended the structuring of effects data according to background exposure levels. The ICRP has also recommended a suite of reference animals and plants (RAPs), including seven aquatic organisms, for use within their developing framework. In light of these propositions, the objective of this work was to collate information on activity concentrations of naturally occurring primordial radionuclides for marine and freshwater ecosystems and apply appropriate dosimetry models to derive absorbed dose-rates.

View Article and Find Full Text PDF

Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues.

View Article and Find Full Text PDF