Publications by authors named "Yanjun Guan"

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

A pivotal approach in engineering artificial peripheral nerve sheaths encompasses the augmentation of the regenerative microenvironment via the manipulation of Schwann cells (SCs). Our investigation employed single-cell sequencing analysis to elucidate the potential functions of Schwann cells and the Wnt pathway in facilitating peripheral nerve regeneration. studies showed that activating the Wnt signaling pathway promotes the transition to repair SCs, boosting their growth, movement, and immune functions.

View Article and Find Full Text PDF

Autologous nerve transplantation (ANT) remains the gold standard for treating nerve defects. However, its efficacy in nerve repair still requires improvement. Mitochondrial dysfunction resulting from nerve injury may be a significant factor limiting nerve function restoration.

View Article and Find Full Text PDF

Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells. However, adult tissue-derived mesenchymal stem cells encounter various obstacles, including limited tissue sources, invasive acquisition methods, cellular heterogeneity, purification challenges, cellular senescence, and diminished pluripotency and proliferation over successive passages. In this study, we used induced pluripotent stem cell-derived mesenchymal stem cells, known for their self-renewal capacity, multilineage differentiation potential, and immunomodulatory characteristics.

View Article and Find Full Text PDF

Predicting changes in future land use and farmland production potential (FPP) within the context of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) is crucial for devising sustainable land use strategies that balance agricultural production and ecological conservation. Therefore, the Huangshui Basin (HSB) in the northeast Qinghai-Tibet Plateau is taken as the study area, and a LUCC-Plus-FPP (LPF) coupling framework based on the SSP-RCP scenarios is proposed to evaluate future land use patterns and FPP changes. On the basis of the predictions of land use changes from 2020 to 2070, the trade-offs in grain production resulting from bivariate changes in farmland and FPP under future scenarios are analyzed.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge.

View Article and Find Full Text PDF

Background: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI).

View Article and Find Full Text PDF
Article Synopsis
  • * A focus is placed on creating biodegradable and efficient devices that minimize infection risks from surgery while supporting transdermal stimulation for better therapeutic results.
  • * The research successfully demonstrates a silicon-based neural interface that enhanced stimulation outcomes, shown to activate nerves in mice and rabbits, and promote faster recovery of injured facial nerves.
View Article and Find Full Text PDF

Curbing the continuous abandonment of large areas of farmland is important for meeting the global food demand and promoting agricultural and rural development. Accurate identification is the key to the effective management and utilization of abandoned farmland. The identification of abandoned land based on a long time series of remote sensing data has become rapid and effective.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation.

View Article and Find Full Text PDF

Research on mentoring programs has portrayed them almost exclusively beneficial for newcomer retention. Drawing from the social cognitive model of career management and the boundaryless career perspective, we depart from this predominant view and examine the "double-edged sword" effects of career support mentoring on newcomer turnover. We propose that career support mentoring received by newcomers is likely to elicit both internal proactive socialization and external career self-management, which act as countervailing forces driving newcomer turnover in opposite directions (i.

View Article and Find Full Text PDF

Graft-host mechanical mismatch has been a longstanding issue in clinical applications of synthetic scaffolds for soft tissue regeneration. Although numerous efforts have been devoted to resolve this grand challenge, the regenerative performance of existing synthetic scaffolds remains limited by slow tissue growth (comparing to autograft) and mechanical failures. We demonstrate a class of rationally designed flexible network scaffolds that can precisely replicate nonlinear mechanical responses of soft tissues and enhance tissue regeneration via reduced graft-host mechanical mismatch.

View Article and Find Full Text PDF

Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures.

View Article and Find Full Text PDF

Land reclamation is a long-term, dynamic process; postreclamation monitoring and management are particularly important, and the use of remote sensing technology is a good way to conduct ecological quality monitoring and evaluations. In this study, we fused ZhuHai-1 and Landsat 8 data; selected the best band combinations to calculate ecological quality indicators such as the inverted red-edge chlorophyll index, modified soil moisture monitoring index, normalized difference built-up and soil index and land surface temperature; and constructed the fusion remote sensing ecological index to monitor the ecological restoration effect of the reclaimed area in Pingshuo, China. The results showed that the inverted red-edge chlorophyll index and modified soil moisture monitoring index had positive contributions, the normalized difference built-up and soil index had a low impact on the ecological quality of the study area, and the land surface temperature had a negative effect on ecological quality.

View Article and Find Full Text PDF

It is a common understanding that the 2019 coronavirus pandemic (COVID-19) significantly harmed mental health. However, findings on changes in overall life satisfaction have been mixed and inconclusive. To address this puzzling phenomenon, we draw upon the domain-specific perspective of well-being and research on catastrophe compassion and propose that the pandemic can have opposing effects on mental health and communal satisfaction, which then differently relate to people's overall life satisfaction.

View Article and Find Full Text PDF

Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear.

View Article and Find Full Text PDF

Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration.

View Article and Find Full Text PDF

Given the advantages of high energy density and easy deployment, biodegradable primary battery systems remain as a promising power source to achieve bioresorbable electronic medicine, eliminating secondary surgeries for device retrieval. However, currently available biobatteries are constrained by operational lifetime, biocompatibility, and biodegradability, limiting potential therapeutic outcomes as temporary implants. Herein, we propose a fully biodegradable primary zinc-molybdenum (Zn-Mo) battery with a prolonged functional lifetime of up to 19 days and desirable energy capacity and output voltage compared with reported primary Zn biobatteries.

View Article and Find Full Text PDF

This study examines the long-term effect of a pandemic on a crucial human capital decision, namely college major choice. Using China's 2008-2016 major-level National College Entrance Examination (Gaokao) entry grades, we find that the 2003 severe acute respiratory syndrome (SARS) had a substantial deterrent effect on the choice of majoring in medicine among high school graduates who experienced the pandemic in their childhood. In provinces with larger intensities of SARS impact, medical majors become less popular as the average Gaokao grades of enrolled students decline.

View Article and Find Full Text PDF

Inflammation is part of the natural healing response, but persistent inflammatory events tend to contribute to pathology changes of tendon or ligament. Phenotypic switching of macrophages within the inflammatory niche is crucial for tendon healing. One viable strategy to improve the functional and biomechanical properties of ruptured tendons is to modulate the transition from inflammatory to regenerative signals during tendon regeneration at the site of injury.

View Article and Find Full Text PDF

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD.

View Article and Find Full Text PDF

Variation analysis of ecosystem services (ESs) is an important means of regional watershed management, especially for the ecologically fragile Three-River Headwaters Basin (TRHB), which is an important part of the national ecological security barrier. In this study, meteorological data, remote sensing images and land use data from 2000 to 2020 in the TRHB were collected. Based on the estimation of ecosystem service values (ESVs), the spatial-temporal variations of ESVs in the three watersheds were analyzed via spatial autocorrelation analysis, one-way analysis of variance (ANOVA), and correspondence analysis.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head (ONFH) is a progressive disease that often necessitates hip replacement if hip preservation therapy fails. ONFH places a heavy economic burden and severe psychological pressure on patients. At present, ONFH is treated by either surgical or non-surgical methods.

View Article and Find Full Text PDF

Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs.

View Article and Find Full Text PDF