Entropy (Basel)
October 2024
Monotonously stratified porous medium, where the layered medium changes its hydraulic conductivity with depth, is present in various systems like tilled soil and peat formation. In this study, the flow pattern within a monotonously stratified porous medium is explored by deriving a non-dimensional number, Fhp, from the macroscopic Darcian-based flow equation. The derived Fhp theoretically classifies the flow equation to be hyperbolic or parabolic, according to the hydraulic head gradient length scale, and the hydraulic conductivity slope and mean.
View Article and Find Full Text PDFPressurized fluid injection into underground rocks occurs in applications like carbon sequestration, hydraulic fracturing, and wastewater disposal and may lead to human-induced earthquakes and surface uplift. The fluid injection raises the pore pressure within the porous rocks, while deforming them, yet this coupling is rarely captured by experiments. Moreover, experimental studies of rocks are usually limited to postmortem inspection and cannot capture the complete deformation process in time and space.
View Article and Find Full Text PDFWe use confocal microscopy to measure velocity and interfacial tension between a trapped wetting phase with a surfactant and a flowing, invading nonwetting phase in a porous medium. We relate interfacial tension variations at the fluid-fluid interface to surfactant concentration and show that these variations localize the destabilization of capillary forces and lead to rapid local invasion of the nonwetting fluid, resulting in a Haines jump. These spatial variations in surfactant concentration are caused by velocity variations at the fluid-fluid interfaces and lead to localization of the Haines jumps even in otherwise very uniform pore structure and pressure conditions.
View Article and Find Full Text PDFWe present quasi-3D visualization and analysis of engineered nanoparticle (ENP) transport behavior in an experimental setup that uses a transmitted light imaging technique. A flow cell was packed with specially adapted, water-transparent, spherical polyacrylamide beads, which carry a negative surface charge representative of many natural environments. Ubiquitous, oppositely-charged ENPs - Au and Ag NPs - were synthesized and introduced into a flow cell subjected to a macroscopically uniform flow field via point source pulse injection, at three different flow rates.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2015
We analyze dynamic behavior of chemically reactive species in a porous medium, subject to anomalous transport. In this context, we present transport experiments in a refraction-index-matched, three-dimensional, water-saturated porous medium. A pH indicator (Congo red) was used as either a conservative or a reactive tracer, depending on the tracer solution pH relative to that of the background solution.
View Article and Find Full Text PDFWe examine distance record setting by a random walker in the presence of a measurement error δ and additive noise γ and show that the mean number of (upper) records up to n steps still grows universally as (R(n)) ~ n(1/2) for large n for all jump densities, including Lévy distributions, and for all δ and γ. In contrast, the pace of record setting, measured by the amplitude of the n(1/2) growth, depends on δ and γ. In the absence of noise (γ=0), the amplitude S(δ) is evaluated explicitly for arbitrary jump distributions and it decreases monotonically with increasing δ whereas, in the case of perfect measurement (δ=0), the corresponding amplitude T(γ) increases with γ.
View Article and Find Full Text PDF