Philos Trans R Soc Lond B Biol Sci
January 2025
Africa boasts high biodiversity while also being home to some of the largest and fastest-growing human populations. Although the current environmental footprint of Africa is low compared to other continents, the population of Africa is estimated at around 1.5 billion inhabitants, representing nearly 18% of the world's total population.
View Article and Find Full Text PDFDarwin's finches are a classic example of adaptive radiation, a process by which multiple ecologically distinct species rapidly evolve from a single ancestor. Such evolutionary diversification is typically explained by adaptation to new ecological opportunities. However, the ecological diversification of Darwin's finches following their dispersal to Galápagos was not matched on the same archipelago by other lineages of colonizing land birds, which diversified very little in terms of both species number and morphology.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2017
Although much of extant diversity is probably the product of evolutionary radiations, the special case of adaptive radiations has not yet been thoroughly explored. Adaptive radiations are postulated to occur when a lineage is exposed to new ecological opportunities, where it can diversify ecologically. We argue that adaptive radiations have two characteristics.
View Article and Find Full Text PDFThe enormous species richness in the Cape Floristic Region (CFR) of Southern Africa is the result of numerous radiations, but the temporal progression and possible mechanisms of these radiations are still poorly understood. Here, we explore the macroevolutionary dynamics of the Restionaceae, which include 340 species that are found in all vegetation types in the Cape flora and are ecologically dominant in fynbos. Using an almost complete (i.
View Article and Find Full Text PDFIn the most comprehensive study to date we explored the phylogeny and evolution of the genus Asparagus, with emphasis on the southern African species. We included 211 accessions, representing 77 (92%) of the southern African, 6 (17%) of the tropical African, 10 (56%) of the strictly European and 6 (9%) of the Eurasian species. We analyzed DNA sequences from three plastid regions (trnH-psbA, trnD-T, ndhF) and from the nuclear region phytochrome C (PHYC) with parsimony and maximum likelihood methods, and recovered a monophyletic Asparagus.
View Article and Find Full Text PDFRecent developments in phylogenetic methods have made it possible to reconstruct evolutionary radiations from extant taxa, but identifying the triggers of radiations is still problematic. Here, we propose a conceptual framework to explore the role of variables that may impact radiations. We classify the variables into extrinsic conditions vs intrinsic traits, whether they provide background conditions, trigger the radiation, or modulate the radiation.
View Article and Find Full Text PDFMountains are often more species-rich than lowlands. This could be the result of migration from lowlands to mountains, of a greater survival rate in mountains, or of a higher diversification rate in mountains. We investigated this question in the globally distributed family Ericaceae, which includes c.
View Article and Find Full Text PDFPremise Of The Study: The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled.
View Article and Find Full Text PDFThe systematics of Mimosoideae has been in a state of flux, which reflects overall poor knowledge of the evolution and biogeography of this group. Preliminary molecular phylogenetic analyses suggest the tribal system of Mimosoideae needs a complete revision. This has led to the use of new generic names for Acacia sensu lato (s.
View Article and Find Full Text PDFIn this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae.
View Article and Find Full Text PDF