Publications by authors named "Yanir Maidenberg"

Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide.

View Article and Find Full Text PDF

SAMs formed from mixtures of alkyne-silanes and alkane-silanes are used to control the areal density of click-reactive alkyne groups on the surface of flat germanium substrates, silicon wafers, and silica nanoparticles. Two new analytical tools are described for characterization of the mixed SAMs: a thermogravimetric analysis (TGA) technique for quantifying the compositional homogeneity of the mixed monolayers formed on nanoparticles, and an infrared spectroscopy (IR) technique to detect preferential surface adsorption. The TGA technique involves measurement of the change in weight when azide-terminated polymers react with surface alkyne groups on silica nanoparticles via a click reaction, while the IR technique is based on the use of attenuated total reflectance infrared spectroscopy (ATR-IR) to monitor click reactions between azide compounds with infrared "labels" and alkyne-functional mixed SAMs deposited on germanium ATR plates.

View Article and Find Full Text PDF