LCB1 is a computationally designed three-helix miniprotein that precisely targets the spike (S) receptor-binding motif (RBM) of SARS-CoV-2, exhibiting remarkable antiviral efficacy; however, emerging SARS-CoV-2 variants could substantially compromise its neutralization effectiveness. In this study, we constructed two multivalent LCB1 fusion proteins termed LCB1T and LCB1T-Fc, and characterized their potency in inhibiting SARS-CoV-2 pseudovirus and authentic virus in vitro. In the inhibition of various SARS-CoV-2 variants, the two LCB1 fusion proteins exhibited markedly improved inhibitory activities compared to LCB1 as anticipated; however, it was observed that relative to the D614G mutation hosting variant, the variants Delta, Lambda, and Omicron BQ.
View Article and Find Full Text PDFDevelopment of highly effective antivirals that are robust to viral evolution is a practical strategy for combating the continuously evolved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inspired by viral multistep entry process, we here focus on developing a bispecific SARS-CoV-2 entry inhibitor, which acts on the cell receptor angiotensin converting enzyme 2 (ACE2) and viral S2 fusion protein. First, we identified a panel of diverse spike (S) receptor-binding domains (RBDs) and found that the RBD derived from Guangdong pangolin coronavirus (PCoV-GD) possessed the most potent antiviral potency.
View Article and Find Full Text PDFTo investigate the adsorption behavior of contaminants with different adsorbents and co-adsorbates under identical conditions, the adsorption capacities of anionic orange II (OII) dye onto graphene oxide (GO) and photoreduced GO (PRGO) in a single-component system and in the presence of cationic methylene blue (MB) dye as well as heavy metal ion Pb were explored. In this work, PRGO was prepared by solar light irradiation of a GO dispersion. GO and PRGO were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy.
View Article and Find Full Text PDFThe unique optical properties of solution-processable colloidal semiconductor quantum dots (QDs) highlight their promising applications in the next generation of optoelectronic and biomedical technologies. In order to optimize these applications, the tunability of QDs' optical properties is always highly desired. Although the tuning during synthesis stages has been intensively investigated, the in situ alteration after device fabrication is still limited.
View Article and Find Full Text PDFHere we report on the preparation of quasi-homogeneous fluorescence emission from graphene oxide (GO) film by modifying the local optical properties through the laser-induced fluorescence quenching effect, and the fabrication of single and multilayer micropatterns on quasi-homogeneous GO films. The modification is stemming from the photoreduction of GO, where the reduction degree and fluorescence intensity can be precisely tuned by changing the laser power and irradiation duration. This versatile approach with a mask-free feature can be readily used to fabricate various complex microstructures on quasi-homogeneous GO film from single layer to multilayer in vertical scale, as well as micrometers to centimeters in lateral scale.
View Article and Find Full Text PDF