Publications by authors named "Yanhui Tang"

In terms of facial expressions, micro-expressions are more realistic than macro-expressions and provide more valuable information, which can be widely used in psychological counseling and clinical diagnosis. In the past few years, deep learning methods based on optical flow and Transformer have achieved excellent results in this field, but most of the current algorithms are mainly concentrated on establishing a serialized token through the self-attention model, and they do not take into account the spatial relationship between facial landmarks. For the locality and changes in the micro-facial conditions themselves, we propose the deep learning model MCCA-VNET on the basis of Transformer.

View Article and Find Full Text PDF

Herein, the reaction mechanism for the GaCl-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl catalytic mechanism. The free energy span for the monomolecular GaCl catalytic mechanism is the highest (31.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle weakness and markedly elevated serum creatine kinase levels.

View Article and Find Full Text PDF

Hydroformylation is one of the most important homogeneous reactions in industrial production. Herein, a density functional theory (DFT) method was employed to investigate two proposed reaction mechanisms of hydroformylation catalyzed by cationic cobalt(II) complexes, the carbonyl dissociative mechanism and the associative mechanism. The calculated results showed that the heterolytic H activation is the rate-determining step for both the dissociative mechanism and the associative mechanism, with energy barriers of 26.

View Article and Find Full Text PDF

The development of homogeneous metal catalysts for the efficient hydrogenation of carbon dioxide (CO) into methanol (CHOH) remains a significant challenge. In this study, a new cyclopentadienone diphosphine ligand (CPDDP ligand) was designed, which could coordinate with ruthenium to form a Ru-CPDDP complex to efficiently catalyze the CO-to-methanol process using dihydrogen (H) as the hydrogen resource based on density functional theory (DFT) mechanistic investigation. This process consists of three catalytic cycles, stage I (the hydrogenation of CO to HCOOH), stage II (the hydrogenation of HCOOH to HCHO), and stage III (the hydrogenation of HCHO to CHOH).

View Article and Find Full Text PDF

The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia.

View Article and Find Full Text PDF

Herein, a new series of bowl-shaped quadridentate ligands with a Si-N-Si-C-Si-C six-membered ring core and their manganese catalysts were designed using the density functional theory (DFT) method for the hydrogenation of unsaturated CX (XN, O) bonds. The frameworks of these ligands named by LYG (LYG = P(R)CHSi(CH)(CH)NSi(CH)(CHSi(CH)CHP(R))CHP(R)) have a Si-N-Si-C-Si-C six-membered ring core at the bottom of the bowl structure and each Si atom links with one phosphorus arm (-CHPR). The Mn catalyst Mn(CO)-LYG was constructed to catalyze the hydrogenation of CO/CN bonds.

View Article and Find Full Text PDF

The synthesis of amides is of great significance in academia and industrial fields. Herein, density functional theory (DFT) studies were employed to investigate the mechanism of the formation of amides aryl epoxides and amines catalyzed by ruthenium pincer complexes. The entire reaction mainly comprises three processes: isomerization of epoxides to aldehydes, aldimine condensation, and amide formation.

View Article and Find Full Text PDF

Polyethylene glycols (PEG) and toluene diisocyanate (TDI) are often used as the main components of binders and curing agents in solid propellants, and their aging is an important issue in the storage and use of propellants. To study the aging behavior and aging mechanism of nitrate ester plasticized polyether propellant (NEPE) matrix during storage, the transition states of aging reactions of binder and curing agent were optimized at the (U)B3LYP/6-311G(d,p) level of theory, and the rate coefficients over the temperature range of 298-1000 K were calculated by CVT theory. The results showed that there were five kinds of aging reactions for binder, which included decomposition, nitration, H abstraction, oxidation, and crosslinking reactions.

View Article and Find Full Text PDF

Herein the reaction mechanism and the origin of stereoselectivity of asymmetric hydrogenation of oximes to hydroxylamines catalyzed by the cyclometalated iridium (III) complexes with chiral substituted single cyclopentadienyl ligands (Ir catalysts and ) under acidic condition were unveiled using DFT calculations. The catalytic cycle for this reaction consists of the dihydrogen activation step and the hydride transfer step. The calculated results indicate that the hydride transfer step is the chirality-determining step and the involvement of methanesulfonate anion (MsO) in this reaction is of importance in the asymmetric hydrogenation of oximes catalyzed by and .

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most commonly diagnosed cancer worldwide with a high incidence of recurrence and metastasis; however, the molecular mechanisms underlying HCC development remain to be fully understood. In this study, we identified circMYH9 as an important regulator of HCC. Overexpression of circMYH9 induced, while knockdown of circMYH9 inhibited, the proliferation, migration, and invasion of HCC cells.

View Article and Find Full Text PDF

Herein, a density functional theory (DFT) study was performed to investigate thoroughly the cascade reaction mechanism for the hydrogenation of carbon dioxide to methanol catalyzed by ruthenium pincer complex [RuH(MePCHSiMe)NH(CO)]. Three catalytic stages involving the hydrogenation of carbon dioxide (stage I), formic acid (stage II) and formaldehyde (stage III) were studied. The calculated results show that the dominant H activation strategy in the hydrogenation of CO to methanol may not be the methanol-assisted H activation, but the formate-assisted H activation.

View Article and Find Full Text PDF

Herein, a density functional theory (DFT) study was performed to investigate asymmetric ketone hydrogenation (AKH) catalyzed by Mn complexes, from the catalytic mechanism to the catalyst design. The calculated results indicated that the Mn(CO)-PSiNSiP (A1, PSiNSiP = P(Ph)Si(CH)NSi(CH)P(Ph)) pincer complex has potential high catalytic activity for ketone hydrogenation. The Mn(CO)-LYB (B, LYB = P(Ph)Si(CH)NSi(CH)P(Me)) pincer complex was then designed to catalyze AKH with good stereoselectivity.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second frequent malignancy among men in the world. Exosomal circular RNAs (circRNAs) have been reported to function in PCa progression. The current study aimed to investigate the role of exosomal circRNA homeodomain-interacting protein kinase 3 (circHIPK3) in PCa development.

View Article and Find Full Text PDF

Purpose: This study aimed to identify genes that may be effective in diagnosing or treating diabetic retinopathy (DR), the most common complication of diabetes mellitus (DM).

Methods: Differentially expressed genes (DEGs) were identified between DR and DM in GSE146615 dataset. DEGs that were consistently up- or down-regulated under both standard glucose and high glucose conditions were identified as common genes and used to generate a protein-protein interaction network and modules.

View Article and Find Full Text PDF

Background: To evaluate early optical quality outcomes after small-incision lenticule extraction (SMILE) surgery for correcting high myopic astigmatism.

Methods: This retrospective study enrolled 55 eyes from 37 patients who had preoperative myopic astigmatism of ≥2.00 diopters (D) who had been treated with SMILE surgery.

View Article and Find Full Text PDF

Density functional theory (DFT) and canonical variational transition-state theory combined with a small-curvature tunneling correction (CVT/SCT) were used to explore the decomposition mechanisms of 1,2,4-butanetriol trinitrate (BTTN) in detail. The results showed that the γ-H abstraction reaction is the initial pathway for autocatalytic BTTN decomposition. The three possible hydrogen atom abstraction reactions are all exothermic.

View Article and Find Full Text PDF

The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT.

View Article and Find Full Text PDF

This work studied the bent and planar structures of M2N2 cores of a series of dinuclear early transition-metal complexes (M = Zr, Hf, Nb, Ta, Mo and W) containing a side-on bridging dinitrogen ligand using DFT method. The calculated results propose three key factors favoring a bent structure: (1) the availability of a single electron in the metal centers which leads to the bonding interaction between two metal atoms, (2) no remarkable steric effect around the metal centers, and (3) the cis conformation of the ligands in the dinitrogen dinuclear complexes. In addition, the bent and planar structures of M2N2 could be transformed into each other if the steric hindrance was slight.

View Article and Find Full Text PDF

Asymmetric hydroformylation (AHF) catalyzed by transition metal (TM) complexes bearing chiral phosphorus ligands is one of the most powerful synthetic ways that could provide chiral aldehydes directly from alkenes and syngas in one step. Experiments have proved the efficiency of Rh catalyst with hybrid phosphorus ligands owning two different phosphorus moieties in AHF. Herein the origin of enantioselectivity of AHF catalyzed by RhH(CO)2[(R,S)-Yanphos] was studied at M06/BSI level using the density functional theory (DFT) method to unveil a fundamental understanding on factors contributing to the efficiency in AHF.

View Article and Find Full Text PDF

Unlabelled: The objectives of this study were to learn about the characteristics and rules of the occurrence of adverse reactions caused by lactam antibiotics and provide a reference for clinical drug use.

Methods: A retrospective study was made to analyse the 113 case reports of adverse reactions caused by β-lactam antibiotics collected in our hospital between 2007 and 2009.

Results: 113 cases of ADR involved 17 kinds of β-lactam antibiotics, headed by ceftriaxone sodium.

View Article and Find Full Text PDF

In this paper, the origins of enantioselectivity in asymmetric ketone hydrogenation catalyzed by RuH(2)(binap)(cydn) (cydn = trans-1,2-diaminocyclohexane) were discussed. Fifteen substrates involving aromatic, heteroaromatic, olefinic and dialkyl prochiral ketones were used to probe the catalytic mechanism and find an effective way to predict the chirality of the products. The calculated results demonstrate that the hydrogen transfer (HT) step from the Ru complex to the ketone substrate is the chirality-determining step in the H(2)-hydrogenation of ketones.

View Article and Find Full Text PDF

In this paper, the mechanism of ketone hydrogenation catalyzed by five Ru bifunctional catalysts with different structural frameworks was studied in detail using density functional theory (DFT). This mechanism contains hydrogen transfer, dehydrogenation of alcohol, and dihydrogen activation fundamental reactions. The involvement of alcohol is also discussed and found with different activities in hydrogen transfer, dehydrogenation and dihydrogen activation steps in five systems.

View Article and Find Full Text PDF

A new functional glycosyl peptidomimetic, featuring a C-glucosyl 1,4-dimethoxynaphthalene backbone in conjugation with two triazolyl phenylalanine moieties on its adjacent C3,4-positions, was readily synthesized via click chemistry. Primary optical measurements indicated that the fluorescence of the ester form of this probe (4) could be selectively quenched by Pb(2+). In contrast, the fluorescence intensity of its analog 5 with released carboxylic groups was uniquely diminished by Cu(2+) with remarkably enhanced sensitivity and selectivity.

View Article and Find Full Text PDF

In this paper, the mechanism of transfer hydrogenation of acetophenone catalyzed by ruthenium-acetamido complex was studied using density function theory (DFT) method. The catalytic cycle of transfer hydrogenation consists of hydrogen transfer (HT) step and dehydrogenation (DH) step of isopropanol (IPA). Inner sphere mechanism (paths 1 and 7) and outer sphere mechanism (paths 2-6) in HT step are fully investigated.

View Article and Find Full Text PDF