Cost efficient and rapid detection tools to detect mutations especially those linked to drug-resistance are important to address concerns of the rising multi-drug resistance infections. Here we integrated dual probes, namely a calibrator probe and an indicator probe, into isothermal amplification detection system. These two probes are designed to bind distinct regions on the same amplicon to determine the presence or absence of mutation.
View Article and Find Full Text PDFCircular RNAs (circRNAs) have emerged as pivotal players in RNA therapeutics. Unlike linear counterparts, circRNAs possess a closed-loop structure, conferring them with enhanced stability and resistance to degradation. Ribozyme-based strategy stands out as the predominant method for synthetic circRNA production, by precisely cleaving and promoting the formation of a covalent circular structure.
View Article and Find Full Text PDFVertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called "discrete preparation-multilayer lamination" based on microelectronic processes.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) is the leading platform of gene delivery for its long-lasting gene transformation and low immunogenicity. Characterization of the integrity and purity of the rAAV genome is critical to ensure clinical potency and safety. However, current rAAV genome characterization methods that can provide size assessment are either time-consuming or not easily accessible to general labs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2024
With the rapid advances in imperceptible and epidermal electronics, the research on ultraflexible organic light-emitting diodes (OLEDs) has become increasingly significant, owing to their excellent flexibility and conformability to the human body. It is highly desirable to develop submicrometer-thick ultraflexible OLEDs to enable the devices to seamlessly conform to the surface of arbitrary-shaped objects and still function properly. However, it remains a huge challenge for currently reported OLEDs due to the lack of an appropriate stripping strategy.
View Article and Find Full Text PDFThe development of high-precision insoluble conducting polymer patterns for soft electronics is extremely challenging, mainly because of the incompatibility of the synthesis process with the underlying layers. In this study, a novel transfer-printing method is designed that enables the fabrication of photolithographic insoluble conducting polypyrrole (PPy) electrode patterns on soft substrates with high precision, demonstrating compatibility with various soft organic functional layers. Excellent mechanical stability, good biocompatibility, ultra-smooth surface, and outstanding conformability are observed.
View Article and Find Full Text PDFThe realization of high-performance photolithographic coplanar organic thin film transistors (OTFTs) is fundamental to boost cosmically commercial applications of organic electronics. However, photolithographic coplanar OTFTs generally suffer from poor charge injection and therefore poor filed-effect performance. Here, a simple and effective strategy is developed to fabricate photolithographic rugged electrodes, and successfully achieve high-density low-contact-resistance photolithographic coplanar OTFTs.
View Article and Find Full Text PDFIndacenodithiophene-benzothiadiazole (IDT-BT) has emerged as one of the most promising candidates for stretchable electronics due to its good stretchability and high mobility. Here, we present an air/liquid interface self-assembly method for the stretchable IDT-BT films and design an air-side transfer adherence strategy for improving the carrier mobility of IDT-BT. By controlling the cosolvent ratio in solution and the solvent evaporation rate, the large-scale intrinsically stretchable IDT-BT film with the diameter as high as ∼3 cm was self-assembled at the air/liquid interface.
View Article and Find Full Text PDFIntrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown.
View Article and Find Full Text PDFNucleic acid fragment analysis via separation and detection are routine operations in molecular biology. However, analysis of small single-stranded nucleic acid fragments (<100nt) is challenging and mainly limited to labor-intensive polyacrylamide gel electrophoresis or high-cost capillary electrophoresis methods. Here we report an alternative method, a microfluidic chip electrophoresis system that provides a size resolution of 5nt and a detection time of one minute per sample of fluorescence-labeled DNA/RNA fragments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
The use of cost-effective renewable raw materials to develop electronic devices has been strongly demanded for sustainable and biodegradable green electronics. Here, by taking inspiration from the traditional calligraphy and kirigami/origami arts, we show a novel cuttable and foldable all-paper touch-temperature sensors fabricated by simply brushing the carbon black ink onto the cellulose paper followed by a layer-layer lamination strategy. The use of environmentally friendly common commodities in daily life including carbon black ink and cellulose paper as the main component materials of sensors effectively lowers the cost and has positive impacts on the environment and health.
View Article and Find Full Text PDFInspired by human eyes, the neuromorphic visual system employs a highly efficient imaging and recognition process, which offers tremendous advantages in image acquisition, data pre-processing, and dynamic storage. However, it is still an enormous challenge to simultaneously simulate the structure, function, and environmental adaptive behavior of the human eye based on one device. Here, a multimodal-synergistic-modulation neuromorphic imaging system based on ultraflexible synaptic transistors is successfully presented and firstly simulates the dry eye imaging behavior at the device level.
View Article and Find Full Text PDFBiodegradable organic field-effect transistors (OFETs) have drawn tremendous attention for potential applications such as green electronic skins, degradable flexible displays, and novel implantable devices. However, it remains a huge challenge to simultaneously achieve high mobility, stable operation and controllable biodegradation of OFETs, because most of the widely used biodegradable insulating materials contain large amounts of hydrophilic groups. Herein, it is firstly proposed fungal-degradation ultraflexible OFETs based on the crosslinked dextran (C-dextran) as dielectric layer.
View Article and Find Full Text PDFScarcity of the antisolvent polymer dielectrics and their poor stability have significantly prevented solution-processed ultraflexible organic transistors from low-temperature, large-scale production for applications in low-cost skin-inspired electronics. Here, we present a novel low-temperature solution-processed PEI-EP polymer dielectric with dramatically enhanced thermal stability, humidity stability, and frequency stability compared with the conventional PVA/c-PVA and c-PVP dielectrics, by incorporating polyethyleneimine PEI as crosslinking sites in nonhydroxyl epoxy EP. The PEI-EP dielectric requires a very low process temperature as low as 70°C and simultaneously possesses the high initial decomposition temperature (340°C) and glass transition temperature (230°C), humidity-resistant dielectric properties, and frequency-independent capacitance.
View Article and Find Full Text PDFAll-paper sensors that are capable of free cutting and folding maximize the merits of papers, which fully utilize the unique potential of papers in cost effectiveness, flexibility, disposability, biodegradability, and a flexible design. However, most of the paper sensors have applied metals as the electrodes and polyimide/polydimethylsiloxane as the encapsulation/sensitive layers, limiting the advantages of the paper sensor. In this work, an all-paper, shape-designable, and reconfigurable capacitive pressure/proximity sensor is fabricated with multilayered tissue paper as the dielectric and polypyrrole printer paper as the electrode/encapsulation.
View Article and Find Full Text PDFHigh-mobility polymer field-effect transistors (PFETs) are being actively explored for applications in soft electronic skin and low-cost flexible displays because of their superior solution processability, mechanical flexibility, and stretchability. However, most of high-mobility PFETs often deviate from the idealized behavior with variable mobility, large threshold voltage, and high off-state current, which masks their intrinsic properties and significantly impedes their practical applications. Here, it is first revealed that interface strain between polymer thin film and rigid substrate plays a crucial role in determining the ideality of PFETs, and demonstrate that various ideal conformable PFETs can be successfully fabricated by releasing strain.
View Article and Find Full Text PDFOrganic thin-film transistors (OTFTs) are identified to be the most promising candidate for next-generation wearable and implantable electronics because of their unique advantages including their flexibility, low cost, long-term biocompatibility, and simple packaging. However, commercialization of organic transistors remains an enormous challenge due to their low mobility and lack of scalable strategy for high-precise soft devices. Here, a novel photolithography fabrication strategy is proposed, which is completely compatible with various commercial organic semiconductor materials, for the first demonstration of the fully photolithographic top-contact conformable OTFTs with the device density as high as 1523 transistors cm.
View Article and Find Full Text PDFInefficient charge injection and transport across the electrode/semiconductor contact edge severely limits the device performance of coplanar organic thin-film transistors (OTFTs). To date, various approaches have been implemented to address the adverse contact problems of coplanar OTFTs. However, these approaches mainly focused on reducing the injection resistance and failed to effectively lower the access resistance.
View Article and Find Full Text PDFPressure/proximity sensing as the essential function of electronic skin (e-skin) has become an emerging technological goal for new-generation electronic devices in a wide variety of application fields, for example, smart electronics, human-machine interaction, and prosthetics. However, the current research lacks pressure/proximity detection of the stretched e-skin, which ignores the key elastic characteristic of skin and hinders the development of e-skin. Here, the pressure/proximity detection of the transparent e-skin in the stretching state is demonstrated based on poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/single-walled carbon nanotube (SWCNT).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
Gas sensors based on polymer field-effect transistors (FETs) have drawn much attention owing to the inherent merits of specific selectivity, low cost, and room temperature operation. Ultrathin (<10 nm) and porous polymer semiconductor films offer a golden opportunity for achieving high-performance gas sensors. However, wafer-scale fabrication of such high-quality polymer films is of great challenge and has rarely been realized before.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
The development of strain sensors with high sensitivity and stretchability, which can accurately detect different human activities such as subtle physiological signals and large-scale joint motions is essential for disease diagnosis and human health monitoring. However, achieving both high sensitivity and stretchability is still an enormous challenge at the moment, particularly for intrinsically stretchable strain sensors. Herein, utilizing large differences in the conductivity and stretchability of micropatterned Au and SWCNTs, we present an ultrasensitive intrinsically stretchable strain sensor by a one-step photolithography process.
View Article and Find Full Text PDFDevelopment of conformal n-channel organic phototransistor (OPT) array is urgent for future applications of organic complementary circuits in portable and wearable electronics and optoelectronics. In this work, the ultrathin conformal OPT array based on air-stable n-type PTCDI-CH was fabricated. The OPT array shows excellent electrical and photoelectrical performance, good device uniformity, and remains stable in electron mobility by 83% after 90 days compared to the initial values.
View Article and Find Full Text PDFStretchable and conformable synapse memristors that can emulate the behaviour of the biological neural system and well adhere onto the curved surfaces simultaneously are desirable for the development of imperceptible wearable and implantable neuromorphic computing systems. Previous synapse memristors have been mainly limited to rigid substrates. Herein, a stretchable and conformable memristor with fundamental synaptic functions including potentiation/depression characteristics, long/short-term plasticity (STP and LTP), "learning-forgetting-relearning" behaviour, and spike-rate-dependent and spike-amplitude-dependent plasticity is demonstrated based on highly elastic Ag nanoparticle-doped thermoplastic polyurethanes (TPU : Ag NPs) and polydimethylsiloxane (PDMS).
View Article and Find Full Text PDF