The shafting systems of hydropower units work as the core component for the conversion of water energy to electric energy and have been running for a long time in the hostile hydraulic-mechanical-electrical-coupled environment-their vibration faults are frequent. How to quickly and accurately identify vibration faults to improve the reliability of the unit is a key issue. This study proposes a novel shafting vibration fault identification framework, which is divided into three coordinated stages: nonlinear modeling, signal denoising, and holographic identification.
View Article and Find Full Text PDFAccurate degradation tendency prediction (DTP) is vital for the secure operation of a pumped storage unit (PSU). However, the existing techniques and methodologies for DTP still face challenges, such as a lack of appropriate degradation indicators, insufficient accuracy, and poor capability to track the data fluctuation. In this paper, a hybrid model is proposed for the degradation tendency prediction of a PSU, which combines the integrated degradation index (IDI) construction and convolutional neural network-long short-term memory (CNN-LSTM).
View Article and Find Full Text PDFRolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads.
View Article and Find Full Text PDFThis paper proposes a distributed model predictive control based load frequency control (MPC-LFC) scheme to improve control performances in the frequency regulation of power system. In order to reduce the computational burden in the rolling optimization with a sufficiently large prediction horizon, the orthonormal Laguerre functions are utilized to approximate the predicted control trajectory. The closed-loop stability of the proposed MPC scheme is achieved by adding a terminal equality constraint to the online quadratic optimization and taking the cost function as the Lyapunov function.
View Article and Find Full Text PDF