Yellow horn (Xanthoceras sorbifolia Bunge) is a oil-rich, woody deciduous shrub with exceptional economic and ecological values. Basic Helix-Loop-Helix (bHLH) transcription factor (TF) family fulfills crucial biological functions in plant. However, genome-wide survey of the bHLH genes in yellow horn has not been performed.
View Article and Find Full Text PDFYellow horn ( Bunge) is a well-known oil-rich seed shrub which can grow well in barren and arid environments in the northern part of China. Yellow horn has received worldwide attention because of its excellent economic and environmental value. However, because of its limited genetic data, little information can be found regarding the molecular defense mechanisms of yellow horn exposed to various abiotic stresses.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2020
Marine biofilms, the attachment of marine microorganisms on artificial surfaces in natural seawater, play critical roles in the development of marine biofouling, which pave ways for the settlement and colonization of sessile invertebrate larvae. Despite the excellent microbe-inhibitory effect of polydimethylsiloxane (PDMS)-based coatings, marine bacteria could still attach to surfaces and form natural biofilms. However, there is little information available on the common structural features of pioneer surface-biofilm bacteria (PSB) communities on different PDMS-based coatings with regard to their compositions, distributions and diversity.
View Article and Find Full Text PDFIn this study, the actual anti-biofouling (AF) efficacy of three protective coatings, including a chlorinated rubber-based coating (C₀) and two polydimethylsiloxane (PDMS)-based coatings (P₀ and P), were estimated via the static field exposure assays. The surface properties of these protective coatings, including surface wettability and morphology features, were characterized using the static water contact angle (WCA) and scanning electron microscope (SEM). The colonization and succession dynamics of the early-adherent biofilm-forming eukaryotic microbial communities occupied on these protective coatings were explored using the Single-stranded Conformation Polymorphism (SSCP) technique.
View Article and Find Full Text PDFIn this study, the antifouling (AF) performance of different carbon nanotubes (CNTs)-modified polydimethylsiloxane (PDMS) nanocomposites (PCs) was examined directly in the natural seawater, and further analyzed using the Multidimensional Scale Analyses (MDS) method. The early-adherent bacterial communities in the natural biofilms adhering to different PC surfaces were investigated using the single-stranded conformation polymorphism (SSCP) technique. The PCs demonstrated differences and reinforced AF properties in the field, and they were prone to clustering according to the discrepancies within different CNT fillers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2016
In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique.
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) transcription factor Ptf1a plays stage-specific roles in the developing pancreas. During early pancreatic development, low levels of Ptf1a preferentially promote the differentiation of pancreatic progenitor cells into endocrine cells, whereas high levels of Ptf1a shift pancreatic progenitors towards an exocrine cell fate. In adults, Ptf1a is essential for the production of exocrine enzymes by pancreatic acinar cells.
View Article and Find Full Text PDF