Publications by authors named "Yanhao Zhang"

p-Phenylenediamine (PPD) antioxidants and their quinone derivatives (PPDQs), as hot-spot novel contaminants in recent years, have been detected in air fine particulate matters (PM) in multiple regions. However, current research all discussed the pollution of PPDs and PPDQs based on the collected PM samples at least in one day (23.5 h).

View Article and Find Full Text PDF

Thyroid function is closely linked to circadian rhythms, but the relationship between the frequency of night eating and thyroid function remains unclear. Our study aimed to investigate the association between night eating frequency and its impact on thyroid function and sensitivity. This study included 6093 participants from the U.

View Article and Find Full Text PDF

The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA), an anthropogenic organic pollutant known for its persistence, resistance to degradation, and toxicity, has raised significant concerns about its potential ecological impacts. Zostera marina, a common submerged seagrass species in temperate offshore areas, is highly vulnerable to pollutant stressors. However, the impact of PFOA on Z.

View Article and Find Full Text PDF

Both perfluorooctanoic acid (PFOA) and polystyrene microplastics (PS-MPs) are emerging contaminants commonly found in aqueous environments. In co-contaminated areas, MPs may act as carriers for PFOA, complicating transport dynamics. However, information on their cotransport in porous media is limited.

View Article and Find Full Text PDF

The increasing industrial use of toxic metals essential for modern electronics and renewable energy presents significant environmental and health challenges. This review was needed to address the environmental risks posed by toxic metals, particularly those accumulating in soil and sediment ecosystems. The objective is to examine the sources of toxic metal pollution, their ecological impacts, and the effectiveness of existing treatment technologies.

View Article and Find Full Text PDF
Article Synopsis
  • A dual-antigen fusion protein vaccine (AH) targeting Als3 and Hyr1 proteins was developed to combat nosocomial bloodstream infections, especially in immunocompromised patients, using AlPO as an adjuvant.
  • In animal studies with mice and rabbits, the AH vaccine showed significant improvements in survival rates (80% for vaccinated mice) and higher antibody responses compared to controls, indicating strong immunogenicity.
  • The vaccine also reduced fungal burdens in vital organs and decreased organ damage, while sera from rabbits exhibited antifungal activity, supporting further research into dual-antigen vaccine approaches.
View Article and Find Full Text PDF

To deal with complicated separation situations, this study successfully prepared two mixed-mode chromatography (MMC) stationary phases, CCL-SIL and PCL-SIL, by functionalizing dialdehyde cellulose (DAC) derivatives. In liquid chromatography applications, CCL-SIL exhibited superior separation performance for nucleosides and bases in HILIC mode, while PCL-SIL performed better in RPLC and IEC modes. Their distinct separation mechanisms were also elucidated by quantum chemical calculations.

View Article and Find Full Text PDF

Analyzing trace-level volatile organic compounds (VOCs) remains challenging due to initial sampling and preconcentration limitations. Inspired by the highly reproducible and constantly renewable electrode surface of dropping mercury electrode (DME), a contactless enrichment process was first reported by using an acoustic levitation device to trap and concentrate VOCs from gas samples onto suspended droplets, which were then directly transferred into gas chromatography-mass spectrometry (GC-MS) for real-time analysis. Compared with traditional methods injection methods, this method achieves a 46-fold increase in nicotine peak area.

View Article and Find Full Text PDF

Mulberry leaf tea (MT) is a popular Chinese food with nutrition and medicinal functions. Solid-state fermentation with of MT (FMT) can improve their quality. Differences in chromaticity, taste properties, and flavor characteristics were analyzed to evaluate the improvements of the sensory quality of FMT.

View Article and Find Full Text PDF

The development of appropriate molecular tools to monitor different mercury speciation, especially CHHg, in living organisms is attractive because its persistent accumulation and toxicity are very harmful to human health. Herein, we develop a novel activity-based ratiometric SERS nanoprobe to selectively monitor Hg and CHHg in aqueous media and in vivo. In this nanoprobe, a new bifunctional Raman probe bis-s-s'-[(s)-(4-(ethylcarbamoyl)phenyl)boronic acid] (b-(s)-EPBA) was synthesized and immobilized on the surface of gold nanoparticles via a Au-S bond, in which the phenylboronic acid group was employed as the recognition unit for Hg and CHHg based on the Hg-promoted transmetalation reaction.

View Article and Find Full Text PDF

We pioneered an angle-adjustable photonic crystal fluorescence platform (APC-Fluor) that integrates PCs, an angular resolution spectrometer and a strategically aligned laser source. This configuration, featuring a coaxial rotating swing arm, allows for precise control over the angles of incidence and emission. The presence of photonic crystal microcavities facilitates the dispersion of fluorescent materials and promotes the transition of electrons from the excited state to the lowest vibrational energy level.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU.

View Article and Find Full Text PDF

The study of the fractions and distribution characteristics of organic phosphorus in the sediment of the water level fluctuating zone of Nansi Lake is conducive to revealing the transformation of phosphorus in the lake, and has important scientific significance for controlling the eutrophication of Nansi Lake. Based on the sediment of the water level fluctuation zone of Nansi Lake. The improved Hedley continuous grading extraction, ultraviolet-visible spectroscopy and three-dimensional fluorescence spectroscope were used to characterize the structural characteristics and stability of organic molecules in the sediment, and to reflect the differences in the structure and stability of organophosphate in the water level fluctuating zone.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) is a catastrophic complication following joint replacement surgery, posing significant challenges to orthopedic surgeons. Due to the lack of a definitive diagnostic gold standard, timely treatment initiation is problematic, resulting in substantial economic burdens on patients and society. In this review, we thoroughly analyze the complexities of PJI and emphasize the importance of accurate diagnosis and effective treatment.

View Article and Find Full Text PDF

Background: The incidence of mental health problems among medical graduate students is much higher than among students of other disciplines. This can have adverse consequences for the medical students themselves as well as their future patients. This study aims to understand the pressures faced by Chinese medical students and the current status of mental health education.

View Article and Find Full Text PDF

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.

View Article and Find Full Text PDF

Photonic crystals (PCs), periodically arranged nanoparticles, have emerged with extraordinary optical properties for light manipulation owing to their photonic band gaps (PBGs). Here, a novel strategy and method was developed for efficient enrichment and sensitive detection of cationic organic pollutants in water. Size-controlled FeO@poly (4-styrenesulfonic acid-co-maleic acid) (FeO@PSSMA) was prepared, and high surface charge were formed with the coating of PSSMA layer on the surface of FeO, which could be used for adsorption and removal of cationic organic pollutants.

View Article and Find Full Text PDF

Soil contamination by toxic heavy metal induces serious environmental hazards. In recent years, the use of indium (In) in semiconductor products has increased considerably and the release of In is inevitable, which will pose great risk to the ecosystem. The interaction between metal and plants which are the fundamental components of all ecosystems are an indispensable aspect of indium assessment and remediation.

View Article and Find Full Text PDF

Piezoelectric ultrasonic transducers, vital in medical devices and aerospace, often face challenges like resonant frequency shifts and impedance variations affecting their operational efficiency. This paper introduces a shunted piezoelectric transducer which could tune itself by digitally programmable inductance. A transformer and inductance-capacitance matching network ensures enhanced compatibility and impedance management.

View Article and Find Full Text PDF

Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape.

View Article and Find Full Text PDF

Fine particulate matter (PM) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM-associated health effects are scarce.

View Article and Find Full Text PDF

Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated.

View Article and Find Full Text PDF

The hydrogen-based membrane biofilm reactor (H-MBfR) is an emerging biological nitrogen removal technology characterized by high efficiency, energy-saving capability, and environmental friendliness. The technology achieves denitrification and denitrogenation of microorganisms by passing hydrogen as an electron donor from inside to outside through the hollow fibre membrane module, and eventually the hydrogen reachs the biofilm attached to the surface of the fibre membrane. H-MBfR has obtained favourable outcomes in the treatment of secondary biochemical effluent and low concentration nitrogen polluted water source.

View Article and Find Full Text PDF