Publications by authors named "Yanhang Zhang"

The presence of antibiotic resistance genes (ARGs), disinfectant resistance genes (DRGs), and pathogens in animal food processing environments (FAPE) poses a significant risk to human health. However, knowledge of the contamination and risk profiles of a typical commercial pig slaughterhouse with periodic disinfectant applications is limited. By creating the overall metagenomics-based behavior and risk profiles of ARGs, DRGs, and microbiomes in a nine-section pig slaughterhouse, an important FAPE in China.

View Article and Find Full Text PDF

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia.

View Article and Find Full Text PDF

Healthy arteries are continuously subjected to diverse mechanical stimuli and adapt in order to maintain a mechanical homeostasis which is characterized by a uniform distribution of wall stresses. However, aging may compromise the homeostatic microenvironment within arteries. Structural heterogeneity has been suggested as a potential microstructural mechanism that could lead to homogeneous stress distribution across the arterial wall.

View Article and Find Full Text PDF

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia.

View Article and Find Full Text PDF

Ligamentum nuchae is a highly elastic tissue commonly used to study the structure and mechanics of elastin. This study combines imaging, mechanical testing, and constitutive modeling to examine the structural organization of elastic and collagen fibers and their contributions to the nonlinear stress-strain behavior of the tissue. Rectangular samples of bovine ligamentum nuchae cut in both longitudinal and transverse directions were tested in uniaxial tension.

View Article and Find Full Text PDF

Understanding how the homeostatic stress state can be reached in arterial tissues can provide new insights into vascular physiology. Even though the function of maintaining homeostasis is often linked to the concentric layers of medial elastic lamellae, how the lamellae are capable of evenly distributing the stress transmurally remains to be understood. The recent microstructural study by Yu (2018 , 20180492) revealed that, circumferentially, lamellar layers closer to the lumen are wavier than the ones further away from it and, thus, experience more unfolding when subjected to blood pressure.

View Article and Find Full Text PDF
Article Synopsis
  • Increased tissue stiffness is linked to the dysregulation of intestinal stem cells (ISCs) in inflammatory bowel disease (IBD), potentially disrupting epithelial cell homeostasis.
  • A study using intestinal organoids on hydrogels with adjustable stiffness found that higher stiffness reduced the population of certain ISCs while promoting differentiation towards goblet cells, showcasing altered cellular dynamics.
  • The findings suggest that fibrosis-induced stiffness in the gut contributes to changes in ISC behavior and function, likely playing a significant role in the remodeling processes seen in IBD.
View Article and Find Full Text PDF

Collagen crosslinking, an important contributor to the stiffness of soft tissues, was found to increase with aging in the aortic wall. Here we investigated the mechanical properties of human descending thoracic aorta with aging and the role of collagen crosslinking through a combined experimental and modeling approach. A total of 32 samples from 17 donors were collected and divided into three age groups: <40, 40-60 and > 60 years.

View Article and Find Full Text PDF

Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network.

View Article and Find Full Text PDF

Fusarium wilt is one of the most destructive and less controllable diseases in melon, which is usually caused by . In this study, transcriptome sequencing and Yeast Two-Hybrid (Y2H) methods were used for quantification of differentially expressed genes (DEGs) involved in (f. sp.

View Article and Find Full Text PDF

Aging and disease alter the composition and elastic properties of the aortic wall resulting in shape changes in blood pressure waveform (BPW). Here, we propose a new index, harmonic distortion (HD), to characterize BPW and its relationship with other and measures. Using a Fourier transform of the BPW, HD is calculated as the ratio of energy above the fundamental frequency to that at the fundamental frequency.

View Article and Find Full Text PDF

Metabolic syndrome increases the risk of cardiovascular diseases. Arteries gradually stiffen with aging; however, it can be worsened by the presence of conditions associated with metabolic syndrome. In this study, we investigated the combined effects of diet-induced metabolic syndrome and aging on the biomechanical properties of mouse common carotid arteries (CCA).

View Article and Find Full Text PDF

This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage.

View Article and Find Full Text PDF

The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions.

View Article and Find Full Text PDF

Aortic dissection is a devastating cardiovascular disease known for its rapid propagation and high morbidity and mortality. The mechanisms underlying the propagation of aortic dissection are not well understood. Our study reports the discovery of avalanche-like failure of the aorta during dissection propagation that results from the local buildup of strain energy followed by a cascade failure of inhomogeneously distributed interlamellar collagen fibers.

View Article and Find Full Text PDF

Arterial stiffening is a hallmark of aging, but how aging affects the arterial response to pressure is still not completely understood, especially with regard to specific matrix metalloproteinases (MMPs). Here, we performed biaxial inflation-extension tests on C57BL/6 mice to study the effects of age and MMP12, a major arterial elastase, on arterial biomechanics. Aging from 2 to 24 months leads to both circumferential and axial stiffening with stretch, and these changes are associated with an increased wall thickness, a decreased inner radius-wall thickness ratio, and a decreased in vivo axial stretch.

View Article and Find Full Text PDF

Extracellular matrix (ECM) plays critical roles in establishing tissue structure-function relationships and controlling cell fate. However, the mechanisms by which ECM mechanics influence cell and tissue behavior remain to be elucidated since the events associated with this process span length scales from the tissue to molecular level. Entirely new methods are needed in order to better understand the multiscale mechanics of ECM.

View Article and Find Full Text PDF

The contribution of glycosaminoglycans (GAGs) to the biological and mechanical functions of biological tissue has emerged as an important area of research. GAGs provide structural basis for the organization and assembly of extracellular matrix (ECM). The mechanics of tissue with low GAG content can be indirectly affected by the interaction of GAGs with collagen fibers, which have long been known to be one of the primary contributors to soft tissue mechanics.

View Article and Find Full Text PDF

Microstructural deformation of elastic lamellae plays important roles in maintaining arterial tissue homeostasis and regulating vascular smooth muscle cell fate. Our study unravels the underlying microstructural origin that enables elastic lamellar layers to evenly distribute the stresses through the arterial wall caused by intraluminal distending pressure, a fundamental requirement for tissue and cellular function. A new experimental approach was developed to quantify the spatial organization and unfolding of elastic lamellar layers under pressurization in mouse carotid arteries by coupling physiological extension-inflation and multiphoton imaging.

View Article and Find Full Text PDF

To successfully develop a functional tissue-engineered vascular patch, recapitulating the hierarchical structure of vessel is critical to mimic mechanical properties. Here, we use a cell sheet engineering strategy with micropatterning technique to control structural organization of bovine aortic vascular smooth muscle cell (VSMC) sheets. Actin filament staining and image analysis showed clear cellular alignment of VSMC sheets cultured on patterned substrates.

View Article and Find Full Text PDF

Elastin is a peculiar elastomer in that it requires water to maintain resilience, and its mechanical properties are closely associated with the immediate aqueous environment. The bulk, extra- and intrafibrillar water plays important roles in both elastic and viscoelastic properties of elastin. In this study, a two-stage liquid-vapor method was developed to investigate the effects of water loss on the mechanical properties of porcine aortic elastin.

View Article and Find Full Text PDF

The underlying mechanisms by which extracellular matrix (ECM) mechanics influences cell and tissue function remain to be elucidated because the events associated with this process span size scales from tissue to molecular level. Furthermore, ECM has an extremely complex hierarchical 3D structure and the load distribution is highly dependent on the architecture and mechanical properties of ECM. In the present study, the macro- and microscale mechanical properties of collagen gel were studied.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionja9goehqblv7ne0mk68t3nmpk7gl9pa5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once