We proposed a novel fiber Mach-Zehnder interferometer (FMZI) that can perform an ultrahigh extinction ratio (ER), ultracompact, and ultra-broadband interference characteristics. The FMZI structure is based on an extremely tiny hollow core fiber (HCF) with a small diameter of 10 μm (named HCF) connected with a beam splitter of a large core of 50 μm HCF (named HCF). The refractive index (RI) of the air core is lower than that of the HCF cladding; a leaky-guided fiber waveguide (LGFW) occurs in such a short-section HCF waveguide to simultaneously have the core and cladding modes.
View Article and Find Full Text PDFSpread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study.
View Article and Find Full Text PDF