To investigate the spatial and temporal distribution characteristics and assess the ecological risks associated with emerging contaminants (ECs) in the Beijiang drinking water source, non-targeted screening was conducted using the ultra-high performance liquid chromatography-mass spectrometry technique (UPLC-MS) for one year (June 2022 to May 2023). This study also involved the quantitative detection of eight typical ECs. The results showed that through the non-targeted screening, a total of 346 pollutants were identified, with industrial materials, pharmaceuticals, and pesticides being the predominant pollutants, collectively accounting for 88.
View Article and Find Full Text PDFThe high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.
View Article and Find Full Text PDFWith the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater.
View Article and Find Full Text PDFPyrolysis combined with land application for dewatered municipal sludge disposal revealed advantages in heavy metals solidification and resource utilization compared with other disposal technologies. In this study, utilizing dewatered municipal sludge for calcium-containing porous adsorbent preparation via pyrolysis was proposed and verified. After pyrolyzing at 900 ° C (Ca-900), the dewatered sludge obtained maximum adsorption capacity (83.
View Article and Find Full Text PDFThe adsorption process for low concentration phosphorus wastewater treatment has advantages of simple convenience, stable performance and less sludge, while most of current adsorbents fail to be separated for reuse. Meanwhile, few people pay attention to the removal of low concentration phosphorus from tail water by adsorbents. In this study, a newly efficient Fe-Mg-Zr layered double hydroxide beads were prepared by simple in-situ crosslinking method and applied for low concentration phosphorus adsorption from real tail water.
View Article and Find Full Text PDFThis study presents a new type of biomass material for defluoridation from water; the material was prepared by loading tetravalent zirconium ions onto grape pomace produced from grape juicing and wine factories. Experiments showed that the optimum pH of defluoridation is around 3.0, and the fluorine removal efficiency could reach 96.
View Article and Find Full Text PDF