Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules have experienced great success in organic light-emitting diodes (OLEDs) owing to their outstanding quantum efficiencies and narrow full width at half-maximums (FWHMs). However, the reverse intersystem crossing (RISC) rates of MR-TADF emitters are usually small, which will lead to relatively long triplet exciton lifetime and severe efficiency roll-off. Here, we report an effective molecular design strategy to introduce multichannel RISC pathways and thus increase RISC rates without compromising the color fidelity and emission efficiency by the "hybridized long-short axis (HLSA)" strategy.
View Article and Find Full Text PDFDeveloping high-efficiency nondoped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off is vital for display and lighting applications. Herein, we developed two asymmetric D-π-A blue emitters, PIAnTP and PyIAnTP, in which triphenylene is first utilized as a functional acceptor. The relatively weak charge transfer (CT) properties, rigid molecular structures, and multiple supramolecular interactions in PIAnTP and PyIAnTP can significantly enhance the fluorescence efficiency and suppress the structural relaxations to obtain a narrowband blue emission.
View Article and Find Full Text PDF