Publications by authors named "Yangyuan Wang"

In this paper, a new pattern of anomalous random telegraph noise (RTN), named "reversal RTN" (rRTN) induced by single oxide trap, is observed in the drain current of nanoscale metal-oxide-semiconductor field-effect transistors (MOSFETs) with high-k gate dielectrics. Under each gate voltage, the rRTN data exhibit two zones with identical amplitudes but reversal time constants. This abnormal switching behavior can be explained by the theory of complete 4-state trap model (with two stable states and two metastable states), rather than the simple 2-state or improved 3-state trap model.

View Article and Find Full Text PDF

A resistive switching device with inherent nonlinear characteristics through a delicately engineered interfacial layer is an ideal component to be integrated into passive crossbar arrays for the suppression of sneaking current, especially in ultra-dense 3D integration. In this paper, we demonstrated a TaO-based bipolar resistive switching device with a nearly symmetrical bi-directional nonlinear feature through interface engineering. This was accomplished by introducing an ultra-thin interfacial layer (SiO) with unique features, including a large band gap and a certain level of negative heat of oxide formation between the top electrode (TiN) and resistive layer (TaO).

View Article and Find Full Text PDF

Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems.

View Article and Find Full Text PDF

As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated.

View Article and Find Full Text PDF

Vertical Si nano-rings with a uniform thickness of about 100 nm have been fabricated by conventional optical photolithography with a low cost based on Poisson diffraction. Moreover, the roughness of the Si nano-rings can be effectively reduced by sacrificial oxidation. In order to increase the density of the nano-rings, coaxial twin Si nano-rings have been fabricated by the Poisson diffraction method combined with the spacer technique.

View Article and Find Full Text PDF