Sichuan Da Xue Xue Bao Yi Xue Ban
May 2023
CD47 is an immunoglobulin that is overexpressed on the surface of a variety of cancer cells. CD47 forms a signaling complex with signal regulatory protein alpha (SIRPα), prompting the escape of cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed in many types of solid tumors and is associated with poor prognosis in patients.
View Article and Find Full Text PDFObjective: We aimed to investigate the radiosensitizing efficacy of the poly-ADP-ribose polymerase (PARP) inhibitor, olaparib, and the Bloom syndrome protein (BLM) helicase inhibitor, ML216, in non-small cell lung cancer (NSCLC) cells.
Methods: Radiosensitization of NSCLC cells was assessed by colony formation and tumor growth assays. Mechanistically, the effects of ML216, olaparib, and radiation on cell and tumor proliferation, DNA damage, cell cycle, apoptosis, homologous recombination (HR) repair, and non-homologous end joining (NHEJ) repair activity were determined.
Nucleic Acids Res
September 2020
Nuclear factor erythroid 2-related factor 2 (NRF2) is a well-characterized transcription factor that protects cells against oxidative and electrophilic stresses. Emerging evidence has suggested that NRF2 protects cells against DNA damage by mechanisms other than antioxidation, yet the mechanism remains poorly understood. Here, we demonstrate that knockout of NRF2 in cells results in hypersensitivity to ionizing radiation (IR) in the presence or absence of reactive oxygen species (ROS).
View Article and Find Full Text PDFBackground: Hepatorenal and hepatopulmonary syndrome are common clinical diseases; however, their mechanisms have not been fully elucidated. Our aim was to determine whether liver injury by bile duct ligation (BDL) causes modifications in kidney and lung tissue in mice, and to explore the possible mechanism of these changes.
Methods: BDL in mice was used as a research model.
Aims: Insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) promotes hepatic stellate cell (HSC) autophagy and activation. However, the underlying mechanism remains unknown. Noncoding RNAs (ncRNAs) including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have received increasing attention.
View Article and Find Full Text PDFBackground: Autophagy is a self-degrading process. Previously, we showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel transforming growth factor β1 (TGFβ1)-interacting factor in liver fibrosis; the role of TGFβ1-mediated autophagy in hepatic stellate cells (HSCs) activation has been investigated. However, whether autophagy is regulated by IGFBPrP1 remains unknown.
View Article and Find Full Text PDFBackground: Our previous study found that insulin-like growth factor binding protein-associated protein (IGFBPrP1) drives hepatic stellate cells (HSCs) activation, and IGFBPrP1 and transforming growth factor β1 (TGFβ1) likely interact with each other to promote HSCs activation. TGFβ1 reportedly promotes autophagy and contributes to HSCs activation; however, the mechanism between IGFBPrP1 and autophagy in liver fibrogenesis is yet unknown. Moreover, long noncoding RNA (lncRNA) H19 participates in autophagy regulation and plays a crucial function in liver fibrosis.
View Article and Find Full Text PDFThe mechanical properties of two-dimensional (2D) materials are critical for their applications in functional devices as well as for strain engineering. Here, we report the Young's modulus and breaking strength of multilayered InSe, an emerging 2D semiconductor of the layered group III chalcogenide. Few-layer InSe flaks were exfoliated from bulk InSe crystal onto Si/SiO substrate with micro-fabricated holes, and indentation tests were carried out using an atomic force microscopy probe.
View Article and Find Full Text PDFThe acquisition of radioresistance by breast cancer cells during radiotherapy may lead to cancer recurrence and poor survival. Signal transducer and activator of transcription 3 (Stat3) is activated in breast cancer cells and, therefore, may be an effective target for overcoming therapeutic resistance. Mesenchymal stem cells (MSCs) have been investigated for use in cancer treatment.
View Article and Find Full Text PDFIntroduction: Fanconi anemia (FA), as one of the congenital bone marrow failure syndromes, is characterized by severe bone marrow hypocellularity and pancytopenia which is similar with acquired aplastic anemia (AAA). However, patients with FA or AAA need an accurate diagnose, as the two syndromes differ significantly in both treatment and prognosis. FA results from gene mutations of the FA pathway genes specifically required for DNA repair, and the mutation of these genes contributes to the genome instability of FA cells.
View Article and Find Full Text PDFSemiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS/Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation.
View Article and Find Full Text PDFA series of primary aminomethyl derivatives of kaempferol were synthesized by a combination strategy involving two steps of the Mannich reaction and S2 nucleophilic substitution. The structures of the products show that the preferential aminomethylations are in the position C-6 or C-8 of the A-ring of kaempferol, especially the latter. Interestingly, the experimental data indicate that the intermolecular hydrogen bonding plays a key role in the formation of primary aminomethyl products of kaempferol.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2017
RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood.
View Article and Find Full Text PDF