We apply direct ink writing for the three-dimensional (3D) printing of polyaniline/reduced graphene oxide (PANI/RGO) composites with PANI/graphene oxide (PANI/GO) gel as printable inks. The PANI/GO gel inks for 3D printing are prepared via self-assembly of PANI and GO in a blend solvent of N-methyl-2-pyrrolidinone and water, and offer both shaping capability, self-sustainability, and electrical conductivity after reduction of GO. PANI/RGO interdigital electrodes are fabricated with 3D printing, and based on these electrodes, a planar solid-state supercapacitor is constructed, which exhibits high performance with an areal specific capacitance of 1329 mF cm.
View Article and Find Full Text PDFActive electrolyte enhanced supercapacitors (AEESCs) have received increasing attention because of their large specific capacitance and easy fabrication process. The better matching between the active electrolyte and the counter electrode and the slow self-discharge rate are the challenges of this type of supercapacitor. In this paper, a novel AEESC with polyaniline/reduced graphene oxide hydrogel (PANI/RGOHG) as the anode and Cu(ii) ions as the cathodic active electrolyte is constructed.
View Article and Find Full Text PDF