Photon-exciton coupling behaviors in optical nanocavities attract broad attention due to their crucial applications in light manipulation and emission. Herein, we experimentally observed a Fano-like resonance with asymmetrical spectral response in an ultrathin metal-dielectric-metal (MDM) cavity integrated with an atomic-layer tungsten disulfide (WS). The resonance wavelength of an MDM nanocavity can be flexibly controlled by adjusting dielectric layer thickness.
View Article and Find Full Text PDFNanotechnology
October 2022
Symmetric metal-dielectric-metal (MDM) nanocavities based on Fabry-Perot resonance play a crucial role in transmission colors. However, their reflection color gamuts are generally limited owing to the narrow dip of resonance spectrum. In this work, we propose and fabricate symmetric titanium-indium tin oxide-silver (Ti/ITO/Ag) nanocavities to realize the reflection colors.
View Article and Find Full Text PDFTopological insulators (TI), as a kind of fantastic nanomaterial with excellent electrical and optical properties, have attracted particular attention due to the promising applications in optoelectronic devices. Herein, we experimentally demonstrated the interaction between light and molybdenum disulfide (MoS) monolayer with an antimony telluride (SbTe) TI nanoparticle. It was found that photoluminescence (PL) emission and Raman scattering signal can be boosted by 5 and 8 folds in MoS monolayer integrated with the TI nanoparticle, respectively.
View Article and Find Full Text PDFMagnetic resonances not only play crucial roles in artificial magnetic materials but also offer a promising way for light control and interaction with matter. Recently, magnetic resonance effects have attracted special attention in plasmonic systems for overcoming magnetic response saturation at high frequencies and realizing high-performance optical functionalities. As novel states of matter, topological insulators (TIs) present topologically protected conducting surfaces and insulating bulks in a broad optical range, providing new building blocks for plasmonics.
View Article and Find Full Text PDFAs newly emerging nanomaterials, topological insulators with unique conducting surface states that are protected by time-reversal symmetry present excellent prospects in electronics and photonics. The active control of light absorption in topological insulators are essential for the achievement of novel optoelectronic devices. Herein, we investigate the controllable light absorption of topological insulators in Tamm plasmon multilayer systems composed of a BiSbTeSe (BSTS) film and a dielectric Bragg mirror with a graphene-involved defect layer.
View Article and Find Full Text PDFWe present a novel kind of optical sensor based on the electromagnetically induced transparency (EIT)-like effect in a Tamm plasmon multilayer structure, which consists of a metal film on a dielectric Bragg grating with alternatively stacked TiO and SiO layers and a defect layer. The defect layer can induce a refractive-index-sensitive ultranarrow peak in the broad Tamm plasmon reflection dip. This nonintuitive phenomenon in analogy to the EIT effect in atomic systems originates from the coupling and destructive interference between the defect and Tamm plasmon modes in the multilayer structure.
View Article and Find Full Text PDFWe present an induced reflection response analogue to electromagnetically induced transparency (EIT) in a novel Tamm plasmon system, consisting of a thin metal film and a Bragg grating with a defect layer. The results show that an induced narrow peak can be generated in the original broad reflection dip, which is attributed to the coupling and interference between the Tamm plasmon and defect modes in the grating structure. It is found that the EIT-like induced reflection is strongly dependent on the thickness of defect layer, grating period number between the metal and defect layers, thickness of Bragg grating layer, refractive index of defect layer, and thickness of metal film.
View Article and Find Full Text PDF