Publications by authors named "Yangwei Lu"

Global navigation satellite systems (GNSS) can attain centimeter level positioning accuracy, which is conventionally provided by real-time precise point positioning (PPP) and real-time kinematic (RTK) techniques. Corrections from the data center or the reference stations are required in these techniques to reduce various GNSS errors. The time-relative positioning approach differs from the traditional PPP and RTK in the sense that it does not require external real-time corrections.

View Article and Find Full Text PDF

The high precision positioning can be easily achieved by using real-time kinematic (RTK) and precise point positioning (PPP) or their augmented techniques, such as network RTK (NRTK) and PPP-RTK, even if they also have their own shortfalls. A reference station and datalink are required for RTK or NRTK. Though the PPP technique can provide high accuracy position data, it needs an initialisation time of 10-30 min.

View Article and Find Full Text PDF

One's position has become an important piece of information for our everyday lives in a smart city. Currently, a position can be obtained easily using smartphones that is equipped with low-cost Global Navigation Satellite System (GNSS) chipsets with accuracy varying from 5 m to 10 m. Differential GNSS (DGNSS) is an efficient technology that removes the majority of GNSS errors with the aid of reference stations installed at known locations.

View Article and Find Full Text PDF

The Chinese BeiDou Navigation Satellite System (BDS) has been an important constitute of the Global Navigation Satellite System (GNSS), and the combination of GPS and BDS shows significant improvements when compared with single GPS system for real-time kinematic (RTK) positioning, and improves on availability and fixing rates, especially in the East Asian area. While network RTK might have different types of receivers, both for global and regional networks, different types of receiver may adopt different internal multipath mitigation methods and other techniques that result in different pseudorange characteristics, especially for a multipath. Then, the performance of wide-lane ambiguity resolution (WL AR) is affected.

View Article and Find Full Text PDF