Dye biodegradation products may cause genotoxicity, raising concerns about the safety of bioremediated water. The underlying biotransformation mechanism and related genotoxicity during anthraquinone degradation remain unclear. In this study, we employed Pseudomonas aeruginosa WYT (PaWYT) to investigate the biotransformation of Vat Blue 4 (VB4), a dye with a typical anthraquinone structure and low bioavailability.
View Article and Find Full Text PDFDerived from infrared pyroelectric detection, typical terahertz (THz) pyroelectric detectors have low sensitivity at low-frequency THz bands. Based on the high-efficiency absorption of the metamaterial perfect absorber (MPA), a novel split ring hole metamaterial-enhanced pyroelectric detector is proposed to achieve efficient multi-narrowband THz detection. Using high frequency simulation software (HFSS), the dimensional parameters including ring radius, ring width, connection beam width, array period, and thickness, are optimized to enhance efficient multi-narrowband absorption.
View Article and Find Full Text PDFCyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2023
In this paper, we describe a graph-based algorithm that uses the features obtained by a self-supervised transformer to detect and segment salient objects in images and videos. With this approach, the image patches that compose an image or video are organised into a fully connected graph, in which the edge between each pair of patches is labeled with a similarity score based on the features learned by the transformer. Detection and segmentation of salient objects can then be formulated as a graph-cut problem and solved using the classical Normalized Cut algorithm.
View Article and Find Full Text PDFGaN high-electron-mobility transistor (HEMT) terahertz (THz) detectors have been widely studied and applied in the past few decades. However, there are few reports about the influence of GaN/AlGaN heterostructure material properties on the detection model at present. In this paper, a response voltage model for a GaN HEMT THz detector that considers the carrier scattering in a GaN/AlGaN heterostructure is proposed.
View Article and Find Full Text PDFBackground: Efforts to resection of glioma lesions located in brain-eloquent areas must balance the extent of resection (EOR) and functional preservation. Currently, intraoperative direct electrical stimulation (DES) is the gold standard for achieving the maximum EOR while preserving as much functionality as possible. However, intraoperative DES inevitably involves risks of infection and epilepsy.
View Article and Find Full Text PDFA double-channel (DC) GaN/AlGaN high-electron-mobility transistor (HEMT) as a terahertz (THz) detector at 315 GHz frequency is proposed and fabricated in this paper. The structure of the epitaxial layer material in the detector is optimized, and the performance of the GaN HEMT THz detector is improved. The maximum responsivity of 10 kV/W and minimum noise equivalent power (NEP) of 15.
View Article and Find Full Text PDFThe low-percolation-threshold conductive networking structure is indispensable for the high performance and functionalization of conductive polymer composites (CPCs). In this work, conductive carbon black (CCB)-reinforced ultrahigh-molecular-weight polyethylene (UHMWPE)/polypropylene (PP) blend with tunable electrical conductivity and good mechanical properties was prepared using a high-speed mechanical mixing method and a compression-molded process. An interconnecting segregated hybrid CCB-polymer network is formed in electrically conductive UHMWPE/PP/CCB (UPC) composites.
View Article and Find Full Text PDFAnthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2016
Recently, an attractive clustering approach named multiexemplar affinity propagation (MEAP) has been proposed as an extension to the single exemplar-based AP. MEAP is able to automatically identify multiple exemplars for each cluster associated with a superexemplar. However, if the cluster number is a prior knowledge and can be specified by the user, MEAP is unable to make use of such knowledge directly in its learning process.
View Article and Find Full Text PDF