Publications by authors named "Yangrui Huang"

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. FeO and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification.

View Article and Find Full Text PDF

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants.

View Article and Find Full Text PDF

Biogenic Mn oxides (BMOs), the main component of natural Mn oxides, closely relate to Cd in sediment. However, the immobilization behavior of Cd in sediments by BMOs is currently unclear. This study explores the role of BMO produced by the Mn-oxidizing fungus Cladosporium sp.

View Article and Find Full Text PDF

The requirement of artificial aeration for increasing nitrogen removal in vertical flow constructed wetlands (VFCWs) brings extra energy consumption and complex maintenance. The feasibility of a modular design to replace artificial aeration for partially saturated VFCWs with palm bark as a carbon source (PSVFCW-pb) to achieve water quality control, especially nitrogen removal was evaluated. The PSVFCW-pb with a spatially separate structure and perforated peripheries for better oxygen diffusion had a promising total nitrogen removal (e.

View Article and Find Full Text PDF

Fungal Mn oxidation is a crucial pathway in the biogeochemical cycling of toxic substances. However, few studies have aimed to promote the process of fungal Mn oxidation or systematically establish the mechanism of action. The effects of static magnetic field (SMF) treatment on the growth and Mn(II) oxidation capability of an Mn-oxidizing fungus, Cladosporium sp.

View Article and Find Full Text PDF

Two-photon probes with broad absorption spectra are beneficial for multi-color two-photon microscopy imaging, which is one of the most powerful tools to study the dynamic processes of living cells. To achieve multi-color two-photon imaging, multiple lasers and detectors are usually required for excitation and signal collection, respectively. However, one makes the imaging system more complicated and costly.

View Article and Find Full Text PDF

Due to less light scattering and a better signal-to-noise ratio in deep imaging, two-photon fluorescence microscopy (TPFM) has been widely used in biomedical photonics since its advent. However, optical aberrations degrade the performance of TPFM in terms of the signal intensity and the imaging depth and therefore restrict its application. Here, we introduce adaptive optics based on the genetic algorithm to detect the distorted wavefront of the excitation laser beam and then perform aberration correction to optimize the performance of TPFM.

View Article and Find Full Text PDF

Overflow pollution is an undesired issue that commonly occurs in combined sewers under wet weather conditions. There is a lack of existing studies on the structural optimization of sewers to prevent siltation, and no previous study on egg-shaped sewers with this purpose has confirmed satisfactory anti-sedimentation performance. To achieve reduced sedimentation and lower energy loss under low- and high-flow conditions, respectively, the nondominated sorting genetic algorithm (NSGA-II) was adopted in this study based on a constant full filling discharge capacity equal to that of a 300 mm (diameter) circular sewer.

View Article and Find Full Text PDF

The applications of biogenic Mn oxides (BMOs) formed by Mn-oxidizing fungus in decontaminating heavy metals have attracted increasing attention. In this study, an efficient Mn-oxidizing fungus was isolated from soil and identified as Cladosporium halotolerans strain XM01. The Mn(II) adsorption and oxidation activities of this strain were investigated, showing significantly high removal and oxidation rates of soluble Mn(II) of 99.

View Article and Find Full Text PDF

Ultrasound-enhanced coagulation is capable of effectively removing algal cells in algae-laden water. However, study differences in ultrasound settings, algal cell conditions and coagulant properties complicate the accurate evaluation of this technique for practical applications. No study has yet compared algae (and algal organic matters) removal among different frequencies of ultrasound in the ultrasound-coagulation process.

View Article and Find Full Text PDF

Ultrasound techniques have gained increased interest in environmental remediation because of their promising performance and reagent-free nature. This study investigated the effects of ultrasound-coagulation on Microcystis aeruginosa removal, disinfection by-product (DBP) formation during subsequent chlorination, and acute toxicity and DBP-associated toxicity variations in chlorinated effluents. Compared with coagulation using polymeric aluminum chloride (5 mg-Al/L) alone, ultrasound-coagulation showed significantly enhanced turbidity removal, with the removal ratio increasing from 51% to 87%-96%.

View Article and Find Full Text PDF

We report a deep penetration microscopic imaging method with a non-diffracting Airy beam. The direct mapping of volume imaging in free space shows that the axial imaging range of the Airy beam is approximately 4 times that of the traditional Gaussian beam along the axial direction while maintaining a narrow lateral width. Benefiting from its non-diffracting property, the microscopic imaging with Airy beam illumination can acquire image structures through turbid medium and capture a volumetric image in a single frame.

View Article and Find Full Text PDF

There is a lack of studies elaborating the differences in mechanisms of low-frequency ultrasound-enhanced coagulation for algae removal among different ultrasound energy densities, which are essential to optimizing the economy of the ultrasound technology for practical application. The performance and mechanisms of low-frequency ultrasound (29.4 kHz, horn type, maximum output amplitude = 10 μm) -coagulation process in removing a typical species of cyanobacteria, Microcystis aeruginosa, at different ultrasound energy densities were studied based on a set of comprehensive characterization approaches.

View Article and Find Full Text PDF

In this study, a comparative investigation of palm bark and corncob (a well-investigated material) for enhancing nitrogen removal efficiency in partially saturated vertical constructed wetland (PSVCW) was performed to evaluate an effective and cost-effective supplementary carbon source. The characteristics of the released organic matter and the release processes were analyzed through optical property characterization and a first-order release-adsorption model, respectively, and the nitrogen removal performance was evaluated in a series of pilot-scale PSVCWs. Results showed that the amount of organic matter released per unit mass of corncob was larger than that released per unit mass of palm bark under the same pretreatment conditions (control, heat, and alkaline pretreatment).

View Article and Find Full Text PDF

Modified MgAl layered double hydroxide (LDH) intercalated with dodecylsulfate anion composites, which were designated as SDS-LDH composites, were synthesized by coprecipitation. The samples were characterized using SEM, EDX, FT-IR, zeta potential analysis, and XRD. The results showed that the SDS-LDH composites contain a thicker and larger porous interconnected network than inorganic LDH due to the enlarged inter-layer distance.

View Article and Find Full Text PDF

Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance.

View Article and Find Full Text PDF