Two-dimensional (2D) lamellar materials are normally capable of rendering super-low friction, wear protection, and adhesion reduction in nanoscale due to their ultralow shear strength between two basal plane surfaces. However, high friction at step edges prevents the 2D materials from achieving super-low friction in macroscale applications and eventually leads to failure of lubrication performance. Here, taking graphene as an example, the authors report that not all step edges are detrimental.
View Article and Find Full Text PDFThe mechanical performance and surface friction of graphene oxide (GO) were found to inversely depend on the number of layers. Here, we demonstrate the non-monotonic layer-dependence of the nanowear resistance of GO nanosheets deposited on a native silicon oxide substrate. As the thickness of GO increases from ∼0.
View Article and Find Full Text PDFAtomically thin two-dimensional (2D) materials are excellent candidates for utilization as a solid lubricant or additive at all length scales from macro-scale mechanical devices to micro/nano-electromechanical systems (MEMS/NEMS). In such applications, wear resistance of ultrathin 2D materials is critical for sustained lubrication performance. Here, we investigated the wear of fluorinated graphene (FG) nanosheets deposited on silicon surfaces using atomic force microscopy (AFM) and discovered that the wear resistance of FG improves as the FG thickness decreases from 4.
View Article and Find Full Text PDFTribochemical wear of contact materials is an important issue in science and engineering. Understanding the mechanisms of tribochemical wear at an atomic scale is favorable to avoid device failure, improve the durability of materials, and even achieve ultra-precision manufacturing. Hence, this article reviews some of the latest developments of tribochemical wear of typical materials at micro/nano-scale that are commonly used as solid lubricants, tribo-elements, or structural materials of the micro-electromechanical devices, focusing on their universal mechanisms based on the studies from experiments and numerical simulations.
View Article and Find Full Text PDFA novel flow injection chemiluminescence method with a myoglobin-luminol system is described for determining aniracetam. Myoglobin-bound aniracetam produced a complex that catalyzed the chemiluminescence reaction between luminol and myoglobin, leading to fast chemiluminescence. The chemiluminescence intensity in the presence of aniracetam was remarkably enhanced compared with that in the absence of aniracetam.
View Article and Find Full Text PDFHuman serum albumin (HSA) or anti-human serum albumin (anti-HSA) yields a catalytic hydrogen wave at about -1.85V (vs Ag/AgCl) in 0.25M NH(3).
View Article and Find Full Text PDF