Publications by authors named "Yangping Bian"

Background: Although macrophage-mediated low-grade chronic inflammation and liver dysfunction have been found to be associated with the development of non-alcoholic fatty (NAFLD) and widely reported, but strategies and drugs targeting macrophages for the treatment of NAFLD are limited.

Hypothesis/purpose: Garlic-derived exosomes (GDE) can be useful for NAFLD due to its anti-inflammatory activity. Clarify whether GDE improves liver dysfunction through macrophage-hepatocyte crosstalk.

View Article and Find Full Text PDF

Low-grade chronic inflammation originating from the adipose tissue and imbalance of lipid metabolism in the liver are the main drivers of the development of obesity and its related metabolic disorders. In this work, we found that garlic-derived exosomes (GDE) supplementation improved insulin resistance, altered the levels of inflammatory cytokines in serum and epididymal white adipose tissue (eWAT) by decreasing the accumulation of macrophages in HFD-fed mice. Meanwhile, we also observed that GDE regulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), one of the critical glycolytic enzymes, to shape the metabolic reprograming of macrophage induced by lipopolysaccharide (LPS) and mitigate the inflammatory response in adipocytes via macrophage-adipocyte cross-talk.

View Article and Find Full Text PDF

Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress play a pivotal role in the initiation and progression of nonalcoholic fatty liver disease (NAFLD). In this study, we found that blueberry-derived exosomes-like nanoparticles (BELNs) could ameliorate oxidative stress in rotenone-induced HepG2 cells and high-fat diet (HFD)-fed C57BL/6 mice. Preincubation with BELNs decreased the level of reactive oxygen species (ROS), increased the mitochondrial membrane potential, and prevented cell apoptosis by inducing the expression of Bcl-2 and heme oxygenase-1 (HO-1) and decreasing the content of Bax in rotenone-treated HepG2 cells.

View Article and Find Full Text PDF