Publications by authors named "Yangning Lu"

Lipid membranes are key to the nanoscale compartmentalization of biological systems, but fluorescent visualization of them in intact tissues, with nanoscale precision, is challenging to do with high labeling density. Here, we report ultrastructural membrane expansion microscopy (umExM), which combines a novel membrane label and optimized expansion microscopy protocol, to support dense labeling of membranes in tissues for nanoscale visualization. We validated the high signal-to-background ratio, and uniformity and continuity, of umExM membrane labeling in brain slices, which supported the imaging of membranes and proteins at a resolution of ~60 nm on a confocal microscope.

View Article and Find Full Text PDF

During development, animals can maintain behavioral output even as underlying circuitry structurally remodels. After hatching, C. elegans undergoes substantial motor neuron expansion and synapse rewiring while the animal continuously moves with an undulatory pattern.

View Article and Find Full Text PDF

In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles.

View Article and Find Full Text PDF

Learning from the locomotion of natural organisms is one of the most effective strategies for designing microrobots. However, the development of bioinspired microrobots is still challenging because of technical bottlenecks such as design and seamless integration of high-performance actuation mechanism and high-density energy source for untethered locomotion. Directly harnessing the activation energy and intelligence of living tissues in synthetic micromachines provides an alternative route to developing biohybrid microrobots.

View Article and Find Full Text PDF

Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion.

View Article and Find Full Text PDF

Cell- or network-driven oscillators underlie motor rhythmicity. The identity of oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion.

View Article and Find Full Text PDF

Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID.

View Article and Find Full Text PDF

Brassinosteroids play diverse roles in plant growth and development. Plants deficient in brassinosteroid (BR) biosynthesis or defective in signal transduction show many abnormal developmental phenotypes, indicating the importance of both BR biosynthesis and the signaling pathway in regulating these biological processes. Recently, using genetics, proteomics, genomics, cell biology, and many other approaches, more components involved in the BR signaling pathway were identified.

View Article and Find Full Text PDF

Various environmental and internal cues play essential roles in regulating diverse aspects of plant growth and development. Phytohormones usually coordinate multiple stimuli to directly regulate multiple developmental programs. Recent studies have provided progresses into the complexity of their cross talk.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: