Angew Chem Int Ed Engl
July 2024
Lithium-ion batteries play an integral role in various aspects of daily life, yet there is a pressing need to enhance their safety and cycling stability. In this study, we have successfully developed a highly secure and flexible solid-state polymer electrolyte (SPE) through the in situ polymerization of allyl acetoacetate (AAA) monomers. This SPE constructed an efficient Li transport channel inside and effectively improved the solid-solid interface contact of solid-state batteries to reduce interfacial impedance.
View Article and Find Full Text PDFSolid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels.
View Article and Find Full Text PDFSolid-state lithium batteries using solid polymer electrolytes can improve the safety and energy density of batteries. Smoother lithium-ion channels are necessary for solid polymer electrolytes with high ionic conductivity. The porosity and channel structure of the polymer film affect the transfer of lithium ions.
View Article and Find Full Text PDF