Publications by authors named "Yangmi Kim"

Background And Aim: Epithelial-mesenchymal transition (EMT) of biliary epithelial cells (BECs) plays an important role in biliary fibrosis. This study investigated the effects of simvastatin on the lipopolysaccharide (LPS)-induced EMT and related signal pathways in BECs.

Methods: Biliary epithelial cells were exposed to LPS (2 µg/mL) or transforming growth factor β1 (TGF-β1) (5 ng/mL) for 5 days.

View Article and Find Full Text PDF

The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used.

View Article and Find Full Text PDF

Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation.

View Article and Find Full Text PDF

Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance Ca(2+)-activated K(+) (BK(Ca)) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased BK(Ca) current in a concentration dependent and reversible manner using a whole cell patch configuration.

View Article and Find Full Text PDF

Previously, we demonstrated that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is one of the serum glucocorticoid-induced protein kinase1 (SGK1) authentic substrate proteins, and that the Ser 824 residue of TRPV4 is phosphorylated by SGK1. In this study, we demonstrated that phosphorylation on the Ser 824 residue of TRPV4 is required for its interaction with F-actin, using TRPV4 mutants (S824D; a phospho-mimicking TRPV4 mutant and S824A; a non-phosphorylatable TRPV4 mutant) and its proper subcellular localization. Additionally, we noted that the phosphorylation of the Ser824 residue promotes its single channel activity, Ca(2+) influx, protein stability, and cell surface area (expansion of plasma membrane).

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are the transcriptional factor that regulate glucose and lipid homeostasis and widely well-known as molecular targets for improvement of metabolic disorder. Because major transcriptional activity of PPARs depends on their proper ligands, the studies for PPAR ligands have been continuously developed. We previously reported the simple enzyme-linked immunosorbent assay (ELISA) systems to screen PPAR ligands and a chemical library including flavonoid derivatives have applied to these systems.

View Article and Find Full Text PDF

Solid tumors contain a population of cancer stem cells (CSCs), and CD133 is widely used as a CSCs marker. We investigated the differences between CD133(+) and CD133(-) cells from the neuroblastoma cell line SH-SY5Y in terms of the expressions of voltage-gated ion channels. A CD133(+) enriched (>60%) population was isolated, and a subsequent whole-cell voltage-clamp study showed that these cells predominantly express TEA-sensitive outward K(+) currents (I(K,TEA)) and TTX-sensitive voltage-gated inward Na(+) currents (I(Na)).

View Article and Find Full Text PDF

Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to 10(th) passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells.

View Article and Find Full Text PDF

TREK (TWIK-RElated K(+) channels) and TRAAK (TWIK-Related Arachidonic acid Activated K(+) channels) were expressed in COS-7 cells, and the channel activities were recorded from inside-out membrane patches using holding potential of -40 mV in symmetrical 150 mM K(+) solution. Intracellular application of an oxidizing agent, 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB), markedly decreased the activity of the TREK2, and the activity was partially reversed by the reducing agent, dithiothreitol (DTT). In order to examine the possibility that the target sites for the oxidizing agents might be located in the C-terminus of TREK2, two chimeras were constructed: TREK2 (1-383)/TASK3C and TREK2 (1-353)/TASK3C.

View Article and Find Full Text PDF

Mesenchymal stem cells have the ability to renew and differentiate into various lineages of mesenchymal tissues. We used undifferentiated human mesenchymal-like stem cells from human umbilical cord vein (hUC-MSCs), a cell line which contains several mesenchymal cell markers. We characterized functional ion channels in cultured hUC-MSCs with whole-cell patch clamp and reverse transcription-polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Two-pore domain K+ (K2P) channels play a critical role in cellular responses to various stimuli, such as stretch or changes in pH and are considered to be important in pathological responses such as apoptosis and tumorigenesis. We investigated effects of H2O2 on various K2P channels expressed in CHO cells. Application of H2O2 did not affect TASK-1, TASK-3, TRAAK currents, but specifically increased TREK-2 currents recorded using a nystatin perforated whole cell technique.

View Article and Find Full Text PDF

Mechanosensitive cation channels may be involved in the development of the myogenic tone of arteries. The molecular identity of these channels is not clear, but transient receptor potential channels (TRPCs) are good candidates. In the present study, we searched for mechanosensitive channels at the single-channel level in arterial smooth muscle cells using the patch-clamp technique and investigated the channel properties in the light of properties of TRPCs.

View Article and Find Full Text PDF

Depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)) induced by phenylephrine or endothelin causes the inhibition of acetylcholine-activated K(+) current (I(KACh)) in atrial myocytes. In the present study, we have investigated the hypothesis that muscarinic receptor induced PIP(2) depletion also causes inhibition of I(KACh), resulting in desensitization. We confirmed the expression of G(q)-coupled muscarinic receptors in mouse atrial myocytes using reverse transcriptase-polymerase chain reaction.

View Article and Find Full Text PDF