Publications by authors named "Yanglin Wu"

Poor osseointegration markedly compromises the longevity of prostheses. To enhance the stability of titanium implants, surface functionalization is a proven strategy to promote prosthesis-bone integration. This study developed a hydrogel coating capable of simultaneous osteoangiogenesis and vascularization by incorporating deferoxamine (DFO) into a sodium alginate mineralized collagen composite hydrogel.

View Article and Find Full Text PDF

Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system.

View Article and Find Full Text PDF

To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed.

View Article and Find Full Text PDF

Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities.

View Article and Find Full Text PDF

In this study, intelligent double-layer films were prepared using modified black rice anthocyanin (MBRA)-curcumin (CUR)-gellan gum (GG) as the inner indicator layer and sodium alginate (ALG)‑zinc oxide (ZnO) as the outer antimicrobial layer. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. The mechanical characteristics, moisture content, and water vapor resistance of GG-MBRA/CUR1@ALG-ZnO, GG-MBRA/CUR2@ALG-ZnO, and GG-MBRA/CUR3@ALG-ZnO films showed significant enhancement compared to GG-MBRA/CUR3 and ALG-ZnO films.

View Article and Find Full Text PDF

Pork is widely consumed worldwide, and many consumers now utilize sensory evaluation techniques to determine the freshness of pork when buying it. A color-changing ink label utilizing bromocresol purple (BCP) and N-hydroxyphthalimide (NHPI) had been created to help consumers better and more rapidly determine the freshness of pork while it is stored. The ink was easy to prepare and could be readily transferred to A4 paper using screen printing technology.

View Article and Find Full Text PDF

To effectively extend the shelf life of fruits meanwhile facilitating consumers to judge their freshness, in this work, a double-layer multifunctional film combining CO2 sensitivity and antibacterial properties was successfully prepared by adding methyl red (MR), bromothymol blue (BTB) into gellan gum (GG) as the sensing inner layer, and doping tannic acid (TA) into sodium alginate with sodium carboxymethyl cellulose (CMC) as the antimicrobial outer layer, which was applied to the freshness indication of strawberries. Microscopic morphology and spectral analysis demonstrated that the bi-layer films were fabricated successfully. The mechanical characteristics, thermal stability, water vapor resistance, and antibacterial capabilities of the bilayer films improved as TA concentration rose.

View Article and Find Full Text PDF

In order to improve the stability of natural anthocyanins in intelligent packaging materials, this work first modified black rice anthocyanins (BRA) by acylation with acetic acid, then modified the acylated BRA by co-coloring with different ratios of curcumin (CUR), and finally added the mixed indicator to gellan gum (GG) to develop intelligent packaging films with good stability. The UV spectroscopy results showed that acetic acid had successfully modified the BRA, while the thermal, photostability and pH stability of the modified black rice anthocyanin (MBRA) were significantly enhanced. The indicators of BRA, MBRA and MBRA mixed with CUR showed excellent pH sensitivity in different buffer solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is the most common joint disorder, and previous research shows that the NLRP3 inflammasome can worsen OA by increasing interleukin-1 (IL-1) levels, but the protective effects of betulinic acid (BA) against OA are unclear.
  • In experiments involving mice and cell cultures, it was found that BA, when injected, slowed down OA symptoms like cartilage damage and inflammation, while in lab studies, it reduced the activation of the NLRP3 inflammasome that produces IL-1.
  • The study concludes that BA can help mitigate OA by inhibiting the processes that lead to IL-1 maturation and secretion, potentially offering a therapeutic avenue for managing the disease.
View Article and Find Full Text PDF

As one of the most successful stories in modern medicine, total joint arthroplasty (TJA) is performed several million times worldwide every year. However, more than 20% of patients will suffer from aseptic loosening (AL) following periprosthetic osteolysis (PPO) in the next few years. Unfortunately, the only effective treatment for PPO, , revision surgery, can cause great surgical trauma.

View Article and Find Full Text PDF

In order to overcome this challenge of poor stability of natural anthocyanins in intelligent packaging materials, roselle anthocyanin (RA) was first modified by acetic acid, and then a double-layer smart indication antimicrobial film was developed using modified roselle anthocyanin (MRA)-gellan gum (GG) as the inner layer and sodium carboxymethyl cellulose (CMC)-starch (ST)-Nisin as the outer layer. UV spectra revealed that acetic acid was successfully grafted onto RA, which dramatically improved their thermal stability, antioxidant capabilities, photostability, and pH stability. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an essential cause of labor loss and disability for people worldwide. Acanthopanax senticosus polysaccharide (ASPS) is one of the most important active components from A. senticosus, which exhibits various pharmacological activities such as antioxidation and immunomodulation.

View Article and Find Full Text PDF

Multifunctional food packaging films were developed based on polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), tea polyphenol (TP) and black carrot anthocyanin (CA). Results of Zeta potential, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction showed that CA enhanced the stability of the particle dispersion system through hydrogen bonding and electrostatic interactions, promoted the compatibility between TP and PVA-CMC (PC) substrates, and enhanced the binding between the components of the films. Because of the interaction of TP and CA, PC-TP-CA films had better water resistance and water vapor barrier properties, thermal stability, antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Background: Wear particles-induced osteolysis is a major long-term complication after total joint arthroplasty. Up to now, there is no effective treatment for wear particles-induced osteolysis except for the revision surgery, which is a heavy psychological and economic burden to patients. A metabolite of gut microbiota, short chain fatty acids (SCFAs), has been reported to be beneficial for many chronic inflammatory diseases.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease characterized by infiltration of immune cells in the synovium. However, the crosstalk of immune cells and synovial fibroblasts is still largely unknown. Here, global miRNA screening in plasma exosomes was carried out with a custom microarray (RA patients vs.

View Article and Find Full Text PDF

Background: Aseptic Loosening (AL) following periprosthetic osteolysis is the main long-term complication after total joint arthroplasty (TJA). However, there is rare effective treatment except for revision surgery, which is costly and painful to the patients. In recent years, the ketone body β-hydroxybutyrate (BHB) has attracted much attention and has been proved to be beneficial in many chronic diseases.

View Article and Find Full Text PDF

As one form of stroke, intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease, which has high morbidity and mortality and lacks effective medical treatment. Increased infiltration of inflammatory cytokines coupled with pyroptotic cell death is involved in the pathophysiological process of ICH. However, little is known about whether concomitant fracture patients have the same progression of inflammation and pyroptosis.

View Article and Find Full Text PDF

Background: In patients with traumatic brain injury (TBI) combined with long bone fracture, the fracture healing is always faster than that of patients with single fracture, which is characterized by more callus growth at the fracture site and even ectopic ossification. Exosomes are nanoscale membrane vesicles secreted by cells, which contain cell-specific proteins, miRNAs, and mRNAs.

Methods: In this study, we used exosomes as the entry point to explore the mechanism of brain trauma promoting fracture healing.

View Article and Find Full Text PDF

Background: Inflammatory osteolysis after total joint replacement (TJR) may cause implant failure, periprosthetic fractures, and be a severe threat to global public health. Our previous studies demonstrated that melatonin had a therapeutic effect on wear-particles induced osteolysis. Gut microbiota is closely related to bone homeostasis, and has been proven to be affected by melatonin.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Although significant progress has been made in clinical treatment, joint inflammation may continue or worsen, and may even progress to the end-stage that requires joint replacement. Traditional therapy using methotrexate (MTX) would cause serious off-target systemic toxicities.

View Article and Find Full Text PDF

The interface chemistry and evolution of the evaporated perovskite films on ITO, pedot/ITO, Si and glass substrates are studied. As evidenced by X-ray diffraction and X-ray photoemission spectroscopy (XPS) results, the PbI2 phase is found to be inevitably formed at the very initial growth stage, even under the conditions of a MAI-rich environment. The extremely low binding energy of adsorbed MAI particles on all the above substrates, as compared to that of PbI2 particles, is responsible for the presence of the PbI2 phase at the interface.

View Article and Find Full Text PDF